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Is denoising necessary for ultrasound image
segmentation deep learning: review and benchmark

Fei Liu , Zhixia Dong , Pei Qin , Binjie Qin , Member, IEEE, Sijie Xu , Xiangyun Zhao , Xinjian
Wan , Xu Chen , Lu Chen

Abstract—Ultrasound image segmentation deep learning still
has performance bottleneck due to an inherent speckle noise
having complex non-Gaussian statistics in the images. Denoised
input data, multi-task segmentation & denoising, and holisti-
cally robust feature learning are three solutions to the speckle
challenge in deep ultrasound image segmentation. To assess
whether denoising (or despeckling) is necessary for ultrasound
image segmentation deep learning in addressing speckle challenge
and improving performance, we review deep learning ultra-
sound image segmentation and denoising as well as establish
an ultrasound image denoising-segmentation cross benchmarking
considering the abovementioned solutions, with the following
core components. Datasets: 4 public ultrasound datasets and 2
self-collected datasets. Despeckling methods: 7 typical despeck-
ling methods, such as non-local means and diffusion methods.
Basic models: U-Net [1], SK-U-Net [2], and CE-Net [3] for
segmenting breast ultrasound images, and U-Net and DAEFF-
Net [4] for echocardiography. Multi-task model: SFS block [5]
for segmentation and despeckling feature fusion. Heuristically
speckle-robust models: residual feedback & refinement network
RF-Net [6] and transformer-assisted CNN network CDM [7].
We eliminate the nondeterminism effect [8], [9] in the deep
learning model training via deterministic training or averaging 30
repeated training runs. We conduct comprehensive experimental
evaluations in both intra- and cross-dataset testings in terms
of segmentation evaluation metrics and statistical analysis with
the Friedman test and two paired tests. We demonstrate that the
performance improvement from denoising pre-processing is more
unstable and slighter (if exists) compared with the improvement
from holistic deep learning segmentation framework, and we
recommend to regard denoising as a kind of hyper-parameter. In
conclusion, the performance enhancement in deep learning-based
ultrasound segmentation should be explored in noise-agnostic
contextual perception through holistic and robust deep learning
framework to correct the uncertainty caused by a wide variety
of heterogeneity from different heterogeneous datasets including
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the speckle noise.

Index Terms—benchmark, performance comparison, ultra-
sound deep learning, holistic image segmentation, denoising,
heterogeneity, contextual perception

I. INTRODUCTION

Ultrasound imaging [10]–[14] is widely used for examining
anatomical structures and lesions without exposure to harmful
radiation. Deep learning-based segmentation methods (see the
taxonomy in Figure 1 for details) in computer-aided ultrasound
diagnosis offer advantages, including reduced labor intensity,
faster diagnosis, and improved segmentation performance over
traditional methods [4], [6], [15], [16]. However, there are still
significant rooms for performance improvement in terms of
segmentation evaluation indices due to several complex factors
that might result in noisy, invalid or insufficient feature rep-
resentation, including the presence of multiplicative speckle
noise, low-contrast features, ambiguous boundaries, structural
variations, and etc [4], [7], [16]–[18] (see the challenge column
in TableI for details).

To tackle the problem of speckle noise, some traditional
[50]–[52] and deep learning segmentation methods [53]–[57]
have considered denoising or despeckling as a useful pre-
processing, where denoised data that differs from the
original input data in the boundaries and details, might
lead to better segmentation feature representation. More-
over, some works applied multi-task deep learning denoising-
segmentation to fully utilize multi-task representation learn-
ing and joint optimization [5], [58]. While newly devel-
oped deep learning segmentation algorithms assumed that
robust features can be extracted to simultaneously reduce
speckle noise through holistic model design, loss functions,
and training strategies [4], [6], [7], [16]–[18]. We are motivated
to analyse whether denoising is necessary for deep learning
based ultrasound segmentation in addressing the challenge of
speckle noise and improving segmentation performance from
the unified perspective of denoising-segmentation framework,
considering three denoising-segmentation solutions of denois-
ing pre-processing, multi-task denoising-segmentation, and
holistic deep learning segmentation framework.

In regard to denoising pre-processing, numerous studies
[53]–[57], [59]–[61] have illustrated that denoising can result
in better deep segmentation performance. However, it is note-
worthy that existing literature fails to consider pivotal factors,
including the nondeterminism in deep learning training [8],
[9], adequate segmentation metrics, detailed statistical analy-
sis, and relatively broad coverage of medical ultrasound deep
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Fig. 1: Research directions for deep learning based ultrasound image segmentation. For the sake of brevity, we denote the
references for corresponding topics in the form of numbers in the bracket. Deep learning based segmentation model:
segmentation building blocks (1) [19], [20], RNNs (2) [21], GNNs (3) [22], attention (4,5) [23], [24], Transformer (6,7) [25],
[26], multi-scale (8,9) [27], [28], boundary correction block (10,11) [6], [29]; architecture, Encoder-Decoder (12) [1], detection
based segmentation architecture (13-15) [19], [27], [30]–[35], generative models (16) [36]. Loss function: segmentation task
oriented (17,18) [37], [38]; generative models oriented (16) [36]; supervision strategies oriented (19,20) [39], [40]; transfer
learning oriented (21-24) [41]–[44]; disentangled representation oriented (25) [45]. Training strategies: data augmentation
(26-28) [46]–[48]; supervision strategies (19,20) [39], [40]; transfer learning (21-24) [41]–[44]; disentangled representation
learning (25) [45]; curriculum learning (29) [49].

learning scenarios with different anatomical sites, imaging
settings, supervision strategies, and dataset sizes.

To the best of our knowledge, no previous research has
applied multi-task denoising-segmentation deep learning for
segmentation purpose in ultrasound image analysis. Xie et
al [58] applied the main task of denoising to preserve reti-
nal structural information, where auxiliary segmentation task
provided retina-related region information. Huang et al. [5]
applied multi-task denoising-segmentation for segmentation
purpose, where the scan noise — generated from moving 2D
scanning, 3D formation and anatomical plane projection —
is significantly different from the non-Gaussian statistics of
speckle noise.

Regarding the holistic deep learning ultrasound segmenta-
tion that inherently reduces speckle noise, some state-of-the-
art methods have designed speckle noise resistant framework
based on holistic and heuristic rules about deep learning
model, loss function, and training strategy. For example,

Wu et al. [7] assumed that within- and cross-image long-
range dependency modeling can extract consistent feature to
alleviate noise disturbance. Observing that speckle noise and
heart motion in echocardiography video make the inter-frame
correspondence problem worse for the video segmentation, Wu
et al. [18] designed context-aware U-Net encoders to extract
feature map from 3 consecutive frames, while also designing
spatiotemporal semantic calibration and bi-directional fusion
modules to align the feature maps of consecutive frames
for speckle-mitigating correspondence calculation. However,
the overall robustness of segmentation performance cannot
be explicitly credited to any denoising solutions, and it re-
mains uncertain whether the segmentation performance can
find potential rooms for further improvement if applying
denoising with the other two solutions due to the lack of
denoising-segmentation cross benchmarking, that is exactly
the purpose of this work. We therefore explore the differences
of segmentation performance among denoising pre-processing,
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multi-task denoising-segmentation, and holistic deep learning
segmentation framework to demonstrate whether denoising
is necessary in segmentation performance improvement. This
work has a fourfold contribution:

(1) We review deep learning ultrasound image segmentation
and denoising methods in a holistic view, covering all possible
combinations between the denoising-segmentation deep learn-
ing frameworks for the challenge of complex speckle noise.

(2) To the best of our knowledge, this is the first compre-
hensive denoising-segmentation cross benchmarking for ad-
dressing speckle noise in deep ultrasound segmentation. This
benchmarking has concluded that denoising pre-processing
brings unstable and slight (if exists) performance improve-
ment to the downstream task of deep learning ultrasound
segmentation, and we recommend to regard it as a kind of
deep learning hyper-parameter, which should be checked in
clinical application to judge its real effect on segmentation.
While multi-task denoising-segmentation [5] actually results
in a segmentation performance degradation, which may be the
limitation of the cross-task gap that is possibly generated from
the different context reasoning and input-output workflows in
generalization or domain transfer.

(3) The holistic deep leaning ultrasound segmentation
framework, including elaborate segmentation building blocks
such as attention mechanism, transformer, and multi-scale
mechanism, have been proved to effectively explore the con-
textual information and simultaneously reduce speckle noise in
deep segmentation. Furthermore, the effectiveness of an intrin-
sic boundary correction with contextual perception in a holistic
design, has been verified by experiments in our denoising-
segmentation cross benchmarking. The context-aware holistic
segmentation design with self-correction is much more evident
and stable in superior performance improvements than the
denoising pre-processing and multi-task denoising & segmen-
tation.

(4) Acknowledging the performance improvement brought
by an inherent denoising in semi-/weakly-/un-supervised deep
learning, we recommend the proposed denoising-segmentation
cross benchmarking to select denoising strategies in these
cases. It should be noted that semi-/weakly-/un-supervised
training might be far from clinical application, potential in-
vestigation should allow the recurrent emergence of context-
aware generalization for a variety of heterogeneity in holistic
deep learning.

II. ULTRASOUND IMAGE SEGMENTATION DEEP LEARNING
FRAMEWORK

To tackle the challenges of multiplicative speckle noise,
low-contrast features, ambiguous boundaries, and structural
variations (see the challenge column in Table I), deep learning
based ultrasound image segmentation is designed to learn
robust feature representations via deep learning model and
loss function as well as training strategy (see Figure 1) for
enhancing segmentation performance. The whole procedure
of deep learning training has been drawn on the left of Figure
1. Specifically, given a label-guided optimization [48], [62]
loss function, the deep learning model can be updated to learn

feature representations from the input data for an optimized
output segmentation performance [40]. The training strate-
gies are designed for better performance, training efficiency,
generalization, stability, or interpretability. We additionally
list out representative breast ultrasound and echocardiography
segmentation algorithms in Table I according to ultrasound
segmentation challenges and our review taxonomy.

A. Deep Learning Model
From the perspective of deep learning training, deep learn-

ing model is expected to extract and combine global semantic
features and local detailed features appropriately for contextual
understanding to get fine segmentation results [19], [20], [27],
[28], [77]–[82]. We decompose the deep learning segmen-
tation model into segmentation building blocks and overall
segmentation architecture. The segmentation building blocks
extract features, while the overall segmentation architecture
coordinates the extracted features to produce the final output.

1) Segmentation Building Blocks: Segmentation building
blocks, including convolutional neural networks (CNNs), re-
current neural networks (RNNs) [21], graph neural networks
(GNNs) [22], attention mechanism [4], [17], [63]–[67], trans-
former [25], [26], and multi-scale mechanism [19], [83], are all
designed with certain inductive bias [84]. CNNs are the most
basic segmentation building blocks that apply local convolu-
tion in sliding windows, resulting in computational efficiency,
local-space-invariance, grid spatial relationship modeling and
training data efficiency. Compared with CNNs, other blocks
introduce better segmentation oriented features from long-
range dependencies, graph relationship, attention-selection and
multi-scale combination.

RNNs capture sequential data dependencies by utilizing
memory and hidden states in feedback connections [21]. Three
typical ways of applying RNNs to image segmentation are:
1) organizing image information in a sequential order, such
as associating intermediate feature grid points [85], encoding
neighbouring patch relationships [86], or utilizing natural slice
connections in 3D data [87]; 2) progressively optimizing RNN-
based deep latent feature representation in multiple segmenta-
tion rounds [49]; and 3) constructing interaction/aggregation
of multi-scale feature maps with ConvLSTM/GRU [88], [89].
The broad meaning of “recurrent” can be extented to feedback
segmentation refinement without RNNs [6].

GNNs [22] process graph data that is composed of nodes
and edges as well as initial node features in medical image
segmentation by representing anatomical structure associations
[71], [90], [91]. The node comes from initial mask [71],
intermediate convolutional features [90], [92] or VAE latent
distribution [91]. The edge is related to spatial distance [93]
or self-attention relationship [94]. The role of GNN building
block varies in the architecture, for example, completely
utilizing graph and GNNs in decoder for feature representation
and output representation [91], adding a GNN module for
supplementary bottleneck feature [92], or adding a graph
convolutional network based boundary rendering to further
improve the segmentation accuracy by vertex adjustment [71].

As an effective approach for brain-like contextual under-
standing, attention mechanism [4], [17], [63]–[67] dynamically
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TABLE I: Summary of deep learning based ultrasound segmentation challenges and methods. Segmentation challenges consist
of the presence of multiplicative speckle noise, low-contrast features, ambiguous boundaries, structural variations, limited
annotation, domain-gap, and etc. Attention mechanism [4], [17], [63]–[67], transformer [7], [16], multi-scale mechanism [17],
[68]–[70] are hypothesized to reduce speckle noise effect. Boundary/residual correction and refinement [6], [17], [71] is popular
in breast ultrasound segmentation, while motion-enhanced representation [72], [73] and multi-analysis task-aware learning are
popular in echocardiography segmentation [66], [67], [72], [73].

Reference Dimension Anatomy Challenge Hypothesis/Idea Deep learning model Loss function Training Strategy

Wang et
al. [6] 2D breast

(1) missing/ambiguous
boundaries, speckle noise
(2) large lesion variety
(3) significant individual
differences

a novel residual feed-
back network by learning
residual representation of
hardly-predicted pixels

a novel residual feedback network
residual representation module
residual feedback transmission strategy

seg: iou loss of initial segmentation
and residual-guided segmentation,
bce loss of residual representation

Not mentioned

Wu et al.
[7] 2D breast

(1) lesion variations
(2) ambiguous boundaries
(3) speckle noise and
artifacts

within- and cross-image
long-range dependency
modeling

two parallel encoders: CNN and
Transformer
bottleneck: a cross-image dependency
modeling module

seg: bce+dice
model: cross-image dependency
Loss

transforming based data augmentation
transfer learning: pretrained CNN & trans-
former encoder backbone

Xue et
al. [17] 2D breast,

prostate

(1) speckle artifacts
(2) blurry boundaries
(3) inhomogeneous inten-
sity distributions

long-range non-local de-
pendencies and boundary
detection

multi-scale ASPP bottleneck
global guidance block, spatial and channel
attention
boundary detection module on encoder
CNNs

seg: bce+dice
model&seg: mse loss of boudary
map

transforming based data augmentation
transfer learning: pre-trained ResNext back-
bone; multi-task of segmentation and
boudary detection

Chen et
al. [63] 2D breast

(1) similar intensity distri-
butions
(2) variable morphologies
(3) blurred boundaries
(4) irregular shapes

adaptive attention channel&spatial adaptive self-attention
module for all convolutional blocks seg: bce not mentioned

Chen et
al. [74] 2D

pneumonia,
COVID-
19, breast
tumour

ImageNet pre-training has
domain gap with medical
training.

Self-supervised medical
models are highly
transferable.

feature extraction encoder (ResNet,
ShuffleNet-v2)
meta-weighting network
Mask R-CNN for finetune: classifica-
tion/segmentation heads

self-supervision: contrastive loss,
weighted InfoNCE loss
meta-learning loss

contrastive learning
well-designed transforming based data
augmentation, in geometric, clolor and
mixup

Huang
et al.
[71]

2D breast

(1) blurry or occluded
edges
(2) irregular nodule
shapes

Boundary is important for
automated BUS nodule
segmentation.

Multi-scale ASPP bottleneck
boundary selection module
graph convolutional-based boundary
rendering module

seg: cross entropy, point Cross-
Entropy, L2 point matching loss

data augmentation: intensity jittering and
flipping
multi-task: region segmentation and bound-
ary selection

Ning et
al. [15] 2D breast

(1) pattern complexity
(2) Similar foreground-
background intensity
(3) low-contrast features
and blurry boundary
(4) lesion shape and posi-
tion variations

background-salient
representations for
assisting foreground
segmentation

foreground\background saliency maps
U-Net shaped foreground path
U-Net shaped background path
straight middle path, background-assisted
fusion unit, shape-aware unit, edge-aware
unit and position-aware unit

seg: bce+dice
model/multi-task: shape-related
morphological information loss in
shape-aware unit

not highlighted

Zhou et
al. [64] 3D breast

(1) tumour shape and size
variations
(2) uncertain tumour
locations
(3) blurry boundary, low
signal-to-noise ratio
(4) speckle noise and
artifacts

tumour location informa-
tion is essential

3D Mask R-CNN head for tumour location
V-Net
Cross-model attention mechanism in skip-
connection layers
aggregate Mask R-CNN location to V-Net
feature level

seg: bce + dice / only dice
multi-task: regression loss, classifi-
cation on Mask R-CNN branch.

multi-task in Mask R-CNN

Cao et
al. [75] 3D breast

CNNs performance limi-
tation from the lack of
annotated data

an uncertainty aware
temporal ensembling
model for semi-supervised
ABUS mass segmentation

Dense U-Net
Uncertainty Aware Temporal Ensembling
Model

seg: GDL for labeled data
semi-suervision: masked MSE loss,
selecting reliable predictions for
network optimization

semi-supervision: temporal ensembling,
pseudo label updating
data augmentation: add Gaussian noise to
the input training data

Monkam
et al.
[68]

2D

echo-
cardiography
and fetal
head

large-scale annotated
dataset limitation

a framework that enables
DL-US-Seg requiring
only limited manually
annotated samples

existing U2-Net, a two-level stacked U-
shape network with Residual U-block,
enabling more effective multi-level and
multi-scale features than U-Net

seg: cross-entropy

data augmentation: SegMix for pretraining
on 10 labeled images, image enhancement
and noise suppression/addition for fine-
tuning
transfer learning: pretraining and fine-tuning

Wei et
al. [72] 2D+t echo-

cardiography

(1) noisy appearance
(2) dynamic myocardium
movement
(3) sparse annotation of
the full sequence
(4) potential quality
degradation during
scanning

a multi-task
semi-supervised
framework for precise EF
estimation

segmentation and tracking deformation: ex-
isting Encoder-Decoder
classfication: Encoder + classification heads

seg: ce+ multi-class Dice loss
tracking & deformation: a local
cross-correlation + a smooth loss
classification: chamber views, bce;
regression: EF, mse
unsupervised mid-cycle pseudo
labels; semi-supervised bi-
directional shape tracking

multi-task: segmentation, tracking, classifi-
cation
semi-supervision

Zhao et
al. [16] 2D echo-

cardiography

the influence of boundary
blur, speckle noise, and
other factors

better global contextual
information and
long-range dependency

local CNN branch, global dual spatial-
channel-attention pyramid transformer
branch for the long-range dependency, a
bidirectional interactive fusion unit for
local and global features fusion

seg: cross-entropy data augmentation: brightness, contrast, and
rotation angle

Guo et
al. [4] 2D echo-

cardiography

(1) key anatomic struc-
tures variations
(2) poor lateral resolution
and inaccurate boundary
(3) speckle noise and
artefacts

a novel deep network to
address these challenges
comprehensively

additional path of ECA module based
channel attention in feature extraction mod-
ule and spatial attention for selective high-
and low-level feature fusion

seg: cross-entropy and sobel gradi-
ent amplitude based boundary loss Not mentioned

Liu et al.
[65] 2D echo-

cardiography

(1) the lack of an effective
feature enhancement ap-
proach for contextual fea-
ture capture
(2) lack of label coherence
in category prediction for
individual pixels

deep pyramid local atten-
tion neural network for
performance improvement

pyramidal multi-head local attention module
to enhance feature within neighbouring con-
text while accommodating size variability of
cardiac structures coherence learning branch

seg: cross-entropy
model/label coherence learning
task oriented: cross-entropy

deep supervision: label coherence learning
for prediction consistency of pixels and their
neighbours
data augmentation: random horizontal flip,
rotation angle of [-20,20] degrees, scaling
of [0.7,1.3], and translation of [-0.3, 0.3]

Gilbert
et al.
[76]

2D echo-
cardiography

acquiring training data is
challenging

generating images from
existing high-quality an-
notations using GANs

3D anatomical statistical shape model, PCA
and generated paired 2D image-label
CycleGAN to transform the pseudo images
into synthetic ultrasound images
U-Net for segmentation

seg: cross-entropy
generative model oriented

data augmentation: generating from input-
label distribution

Wu et al.
[18] 2D+t echo-

cardiography

(1) speckle noise
(2) irregular heart motion
(3) limited labeled
training data

feature based frame
semantic calibration,
distinctively harness the
temporal information,
mean teacher
semi-supervised strategy

3 frame-position-specific (t − 1, t, t + 1)
U-Net-Encoders
a spatiotemporal semantic calibration
module with convolution based
spatiotemporal
correspondences & fusion in the skip-
connection layer

seg: bce + dice
semi-supervision: consistency loss,
MSE and Kullback Leible diver-
gence loss

semi-supervision
data augmentation: horizontal flipping, ver-
tical flipping, diagonal flipping, and random
rotation with a degree between [-15 , 15]

Zamzmi
et al.
[66]

2D echo-
cardiography

tedious cardiac regions
delineation, intra-observer
variability
limited performance by
training dataset size and
computational resources

self-supervised echo-
specific representation,
lightweight network
for fast region-based
segmentation

auto-encoder: MobileNetV2
fuzzy global average pooling
classification head: Trilateral Attention
Network
a region localization module, three
lightweight pathways for feature encoding,
a pathway fusion module

semi-supervision: reconstructive
MSE loss
classification: ce and bce
seg: ce; localization, smoothed L1,
auxiliary loss

self supervision: denoising autoencoder for
echo-specific representation
multi-task: segmentation and classification
two stage segmentation training: (1) coarse
segmentation model, (2) localization

Cui et
al. [67] 2D+t echo-

cardiography

uncertainty estimation that
is significant in clinically
understanding the perfor-
mance of a model

a multitask model
with Task Relation
Spatial co-Attention
for joint segmentation,
quantification, and
uncertainty estimation on
paired 2D echo

task relation spatial co-attention model with
spatial attention between segmentation task
and quantification task to explore the jointly
embedded spatial information and channel
co-excitation to re-weight the task-aware
channel distribution adaptively

seg: ce, boundary consistency loss
knowledge distillation: paired
apical 4- and 2-chamber view,
Kullback-Leibler loss
quantification: joint indices
constraint based on 3 smooth L1
losses

multi-task: segmentation, quantification,
and uncertainty estimation
data augmentation: random rotation of
[-10,10]

Xue et
al. [73] 2D+t echo-

cardiography

motion information is not
leveraged or is only uti-
lized as an auxiliary task.

effectively utilizing
the underlying motion
information by accurately
predicting optical flow
fields

a shared feature extractor by the segmen-
tation and the optical flow sub-tasks for
efficient information exchange
optical flow orientation congruency con-
straint motion-enhanced segmentation mod-
ule

seg: CE for ES/ED frames
flow estimation: unsupervised op-
tical flow, warping loss, including
ssim, L1, edge-aware smoothness
regularizer, orientation congruency

multi-task: segmentation and optical flow
estimation
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adjusts feature weights to highlight salient features and ignore
irrelevant ones [23], [24]. According to the weighted targets,
attention mechanism in image segmentation can be categorized
into spatial attention that selects attentive regions, channel
attention that selects useful feature channel [95], and hybrid
attention. SK-U-Net [2] added channel attention alike SENet
[95] after convolutional blocks in the encoder for better breast
tumour segmentation with fewer model parameters. DAEFF-
Net [4] used additional path of ECA module [96] based
channel attention in feature extraction module and spatial
attention for selective high- and low-level feature fusion for
paediatric echocardiographic segmentation. Considering the
low signal-to-noise of echocardiography and stronger feature
coherence of local pixels than global pixels, PLANet [65] pro-
posed pyramidal multi-head local attention module to enhance
neighbouring feature while accommodating size variability.
DSCG-Net [97] included a scale-based spatial attention to fuse
multi-level features extracted by the encoder, and connected a
centerline heatmap reconstruction side-branch network to the
end of the encoder for increasing the network generalization
in segmenting the common and internal carotid arteries.

Self-attention mechanism [98] characterizes the pairwise
embedding correlations of all positions in a sequence (such
as text, image patch, audio) to calculate weighted better em-
bedding features. It is formulated as a weighted query mapping
from key-value pairs to an output. It can be applied as a kind of
spatial attention in image segmentation tasks, for example, Wu
et al. [99] designed a non-local block for long-range depen-
dency modeling in computer vision applications. Originated
from self-attention, transformer has become a popular deep
learning building block [25], [26]. Compared with CNNs,
transformer can capture better long-range dependencies. On
the other hand, however, it needs more training data to learn
potential rules due to the weak inductive bias. Researchers in
medical image segmentation have turned the research direc-
tions from pure transformer to the combination of CNNs and
transformer as well as from transformer-based fully supervised
training to transformer based pre-training [25], [26]. For
example, Wu et al. [7] utilized parallel CNN&transformer
encoder and a cross-image dependency modeling module for
within- and cross-image long-range dependency modeling for
breast ultrasound segmentation. Zhao et al. [16] constructed
interactive fusion and learning between local convolution
features and global transformer context information for key
point locating in pediatric echocardiographic.

Multi-scale blocks collect long-range multi-scale dependen-
cies and propagate local geometric contextual information
through parallel pooling and atrous convolution of different
scales in different deep intermediate layers [17], [19], [27],
[28], [68], [70] as well as parallel encoder [69]. Specifically,
atrous spatial pyramid pooling (ASPP) embedded the global
contextual information in deep convolutional neural networks
for semantic image segmentation [83]. CE-net [3] added an
inception structure with multi-branches of astrous convolutions
and a pooling block with multi-kernel of different sizes in the
bottleneck, enlarging the receptive field and encoding global
context information. An unsupervised multi-scale shape-aware
strategy [100] captured long-range relationships in the high-

order statistics that measure the joint distribution of classes
at relative positions corresponding to different orientation and
distances in cross-domain image segmentation. MDF-Net [70]
employed a two-stage architecture with a multiscale feature
selection sub-network and a structurally optimized refinement
sub-network, mitigating speckle noise and inter-subject vari-
ation via better feature exploration and fusion. Multi-scale
semantic features in the different intermediate layers can be
further refined by attention [17], graph representation [71] or
joint alignment of cross-domain invariant information [100],
and then be received at decoder to progressively recover geo-
metric details from the interaction of rich but noisy contexts
for the fine segmentation.

Recently, uncertainty-based boundary correction or bound-
ary edge refinement [29], [101]–[103] with context perception
is proposed to address the high ambiguity of object boundary
representation and the high variability of poor ultrasound
image quality. By exploiting dynamic boundary preservation
block to predict a key boundary point (KBP) map [102]
for enhancing the semantic features from images, SCCNet
[29] proposed an iterative training strategy to update the
importance value of the KBP map for U-Net training and use
a weighted cross-entropy loss to give more attention to the
KBP. A context module also incorporated a class-level context
using the predicted segmentation map to construct a dynamic
multi-scale filter with adaptive kernel weights for more con-
textual perception in discriminating similar objects. RF-Net
[6] incorporated a novel residual representation module to
grasp the residual characteristics of the ambiguous bound-
aries and perplexing regions. This incorporation facilitates the
network in directing increased attention towards the pixels
that are challenging to predict. SABR-Net [103] addressed
the missing and ambiguous boundaries in the contexts of
shadow artifacts via semi-supervised shadow-aware network
with boundary refinement, by adding shadow imitation regions
to the original images and design shadow-masked tranformer
blocks to perceive missing anatomy. A densely connected
3D pyramidal dilated convolutuion network [104] is proposed
with sequential cross-frame uncertainty guidance to exploit
the longitudinal information and perceive size-varied vessel
regions for intravascular ultrasound sequence segmentation.
All of these boundary correction schemes can explore the
transcending boundary edge contextual information to filter
out the unreliable boundary or edge predictions in intermediate
feature maps and multi-scale consistency segmentation.

2) Architecture: We categorize the architectures into
Encoder-Decoder architecture [19], [20], [27], [28], detection-
based segmentation architecture [19], [27], [33]–[35] and
generative models based architecture [47].

(a) Encoder-Decoder architecture [19], [20], [27], [28].
As the most popular segmentation architecture, the Encoder-
Decoder architecture first encodes the input data into the latent
feature, and then decodes the latent feature into the output
segmentation mask.

The abovementioned segmentation building blocks can be
interconnected flexibly within the Encoder-Decoder architec-
ture. A classic CNN example of an Encoder-Decoder architec-
ture is the U-Net [1], which is comprised of convolutional neu-
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ral networks, pooling/upsampling layers, and skip-connection
layers. U-Net stands out as the most widely adopted biomedi-
cal segmentation model due to its versatility and simplicity
[77], [79], [80], [105]–[107]. Other segmentation building
blocks in the preceding sub-section except CNNs are often in-
corporated into U-Net-like networks to enhance performance.
For example, DAEFF-Net [4] with attention mechanism, CE-
Net [3] with multi-scale mechanism, and CDM [7] with both
CNN and transformer encoders.

Moreover, there are also modifications to add elaborate
structure-level elements and holistically connect them to ba-
sic U-Net structure. For example, RF-Net [6] designed two
sequential U-Net with recurrent initial segmentation residual
representation and feedback transmission to enhance the seg-
mentation confidence of missing/ambiguous boundary pixels
with uncertainty rectification. SMU-Net [15] designed two
parallel U-Net shaped paths and a straight middle path to
additionally utilize background saliency maps as input to
improve foreground segmentation performance.

(b) Detection-based segmentation architecture [19], [27],
[33]–[35]. Different from the Encoder-Decoder architecture,
detection-based segmentation architecture explicitly integrates
the procedures of detection and segmentation. As two-stage
framework, Mask R-CNN [30] firstly regressed the object
boundary box through Faster R-CNN, and then added a
segmentation branch. In Mask R-CNN based medical image
segmentation, Lian et al. [108] detected anatomical parts
and diseases proposals and then mined structure-aware re-
lationship for the detection and segmentation of thoracic
diseases. Ding et al. [109] improved the Mask R-CNN ar-
chitecture for ultrasound nerve segmentation through multi-
scale mechanism, attention mechanism, and upsampling skip-
connection. Furthermore, box annotations [35] are required
as coarse mask generation for pseudo mask labels in weakly
supervised instance segmentation, then these labels are utilized
as training samples for the self-training instance segmentation
stage. As one-stage frameworks, PolarMask [31], [110] via
polar coordinate and contour proposal networks [32]–[34] via
contour modeling utilized the regressed shape representation
for the simultaneous object detection and segmentation. Com-
pared with the Encoder-Decoder segmentation architecture,
detection-based segmentation under the guidance of region
proposal and shape representation are more computationally
efficient, suitable for instance segmentation, and beneficial for
context relationship expression, while the Encoder-Decoder
segmentation architecture has the advantage of fine segmenta-
tion.

(c) Generative model architecture [36], [47]. Different
from the above discriminative models that directly characterize
the conditional probability P (Y |X = x), where X is the
observable variable, Y is the target variable, and x is an
observation, generative models formulate the joint data prob-
ability distribution P (X,Y ), with the advantage of better task
understanding and uncertainty expression [36], [47]. In regard
to the taxonomy and principle of generative models, we refer
the readers to [36]. Generative adversarial networks consist
of a generator for distribution formulating and a discriminator
for reality judgement. The key is to guide the weight updating

of the generator for representative features under the feedback
from the discriminator. Ruan et al. [111] and Mahmood et
al. [112] used adversarial training to distinguish tumours
from cysts and distinguish overlapped nuclei, respectively.
Diffusion model [113] is very popular recently, including
noise adding based forward diffusion and denoising based
backward diffusion. Wu et al. [114], [115] applied diffusion
model with denoising effective network designs into medical
image segmentation and achieved state-of-the-art performance.
Compared with discriminative models, generative models in-
corporate more comprehensive distribution and can generate
new data to assist target tasks, while discriminative models
extract more practical features.

B. Loss Function

Loss function in deep learning characterizes the difference
between the predicted result and the expected ground truth /
state, and then the difference is minimized by updating the
deep learning model parameters through the back-propagation
algorithm, resulting in meaningful feature representation.

The basic segmentation-task oriented loss functions consist
of region based losses (such as dice coefficient loss and
intersection over union loss), distribution based loss (such as
cross-entropy loss and focal loss), boundary based loss, and
compound loss [28], [37], [38]. For boundary loss functions
for better boundary segmentation performance, Kervadec et al.
[116] designed a differentiable integral of non-symmetric L2

distance metric over the contours, while Du et al. [38] paid
attention to the boundary pixels gotten through dilation and
erosion operations in the similar form of dice coefficient loss.
Region based, distribution based and boundary loss functions
can be easily combined together to form compound loss
function. We refer the readers to [37] for more details about
medical segmentation losses.

The deep learning model design and training strategies
might interact with the loss function to achieve a holistic
segmentation design. Generative models introduce the adver-
sarial loss in generative adversarial networks, and the noise
prediction loss in diffusion models. Semi-supervised learning
introduces the consistency loss, while unsupervised learning
utilizes clustering loss, reconstruction loss, or contrastive
loss [39], [40]. In transfer learning, multi-task solution [43]
might simultaneously utilize segmentation and classification
loss function, while domain adaption tries to minimize the
domain gap between the source domain and the target domain
through loss function such as maximum mean discrepancy
[44]. In disentangled representation learning, loss function,
such as latent regression loss [45], can be used to improve the
latent representation. Further, due to their complexity, domain
adaptation and disentangling representation learning involve
different aspects of deep learning, such as generative models,
segmentation task and semi-/self-/un-supervised strategies, to
boost their performance, and thus use combined loss functions.
In these cases, it is important to balance various loss functions
to get good model performance.



SUBMITTED TO PROCEEDINGS OF THE IEEE 7

C. Training Strategies

Training strategies are designed for better performance,
training efficiency, generalization, stability, or interpretability.
Considering the focus and length of the paper, we simply
mention the multi-task learning. Multi-task learning jointly
learns related tasks to extract task-shared features and improve
task-specific features, improving efficiency, generalization and
performance of the target task or all tasks [42], [43]. To
achieve the multi-task feature learning, the model architecture
defines the information flow according to the connection order
of task structures, and the architectures can be categorized
into cascaded, parallel, interacted and hybrid [43]. We refer
the readers to [42], [43] for detailed information. We have
introduced related works of multi-task learning of ultrasound
denoising and segmentation in the Introduction.

Some other training strategies are marked in Figure 1. We
refer the readers to corresponding references in Figure 1 for
detailed knowledge.

D. Summarization

Typical ultrasound breast and echocardiography segmenta-
tion algorithms are summarized in Table I. It can be seen
that many works hypothesized that deep learning segmen-
tation framework can reduce speckle noise effect. Holistic
segmentation building blocks, including attention mechanism
[4], [17], [63]–[67], [7], [16], multi-scale mechanism [17], [68]
are the most popular strategies. Moreover, boundary correction
and refinement [6], [17], [71] is popular in breast ultrasound
segmentation, while motion enhanced representation [72], [73]
and multi-task learning (chamber-view classification, quantifi-
cation, uncertainty estimation) [66], [67], [72], [73] is popular
in echocardiography segmentation.

Table I additionally show challenges and solutions to labeled
data limitation [39], [68], [75], uncertainty estimation [67],
[117] and label coherence [65], [118]. While not extensively
examined in this work, they are also hot topics in deep learning
ultrasound segmentation.

III. ULTRASOUND DENOISING

denoising methods can be classified into four main cate-
gories [119]–[123]: spatial domain filtering, transform domain
filtering, deep learning filtering, and hybrid methods. Spatial
domain filtering includes local adaptive, non-local means
(NLM), PDE (partial differential equation), and total variation
(TV) based methods. All of these abovementioned denoising
methods are summarized in Table II.

A. Spatial Domain Filtering

(a) Local adaptive filtering. Local adaptive filter rectifies
a pixel referring to local statistics, including weighted average
value [124], [144], [145], median value [125] and extreme
value [126]. These filters have the advantage of simple prin-
ciple and fast speed, but the performance heavily depends on
local window size.

(b) Non-local means filtering. Different from the lo-
cal filters that focus on local similarity, NLM utilizes self-
similarity in a larger window. Measured as Euclidean intensity

distance between reference blocks and the selected block, self-
similarity measure is used to perform a weighted average
among central pixels of reference blocks to obtain the new
intensity for the central pixel of the selected block [127].
Optimal Bayesian NLM (OBNLM) [128] introduces NLM for
ultrasound denoising by designing a new similarity measure
called Pearson distance. OBNLM can well preserve structural
information with suitable parameters, but it has relevant limi-
tations when dealing the problems of high computational cost,
optimal parameter selection and imperfect similarity measure-
ment. To improve OBNLM’s similarity measure, Zhan et al.
[129] refined common distance through principal component
analysis. To tackle bias due to speckle noise, Sudeep et
al. [130] proposed an unbiased NLM method that estimated
and subtracted independent bias signal using the maximum
likelihood method. According to [123], the groundbreaking
NLM principle has stimulated important progress by being
integrated with transform domain based or TV based methods.

(c) PDE and TV based methods. Spatial domain method-
ology has seen an increasing research attention and dominant
performance improvement from PDE-based methods [131],
[133]–[135], [146] and TV [135], [147], [148] methods. PDE-
based methods mainly apply the anisotropic diffusion (AD)
[131], [133], [134], [146] under the guidance of diffusion
coefficients [131], encouraging internal diffusion in similar
regions and inhabiting interaction between different regions.
The diffusion coefficient consists of three parts, boundary edge
information, noise information and a non-negative decreasing
function, keeping a balance between edge preservation and
noise removal. Various AD-based denoising methods have
been proposed by implementing different edge detection and
detail-preserving strategies. The edge and noise information of
classical AD methods has been shown in Table II. Specifically,
Gabor-based anisotropic diffusion method [146] exploited
Gabor transform to detect tissue edges and enhance the dis-
crimination between the edges and the noise for improving
the diffusion and despeckling performance. Sudeb et al. [134]
represented edge information in another PDE-based method,
which injected the past edge information into the diffusion and
preserved fine features. TV based methods mainly focus on
fidelity term and regularization term [135] to use smooth and
regularization prior. Mei et al. [50] utilized phase congruence-
based edge significance measure called phase asymetry to
adaptively detect edge features, and integrated AD with TV in
order to leverage the strengths of AD in homogeneous regions
and TV in the proximity of features. All of these AD methods
have relatively low computational cost and perform well at
low-to-moderate noise levels, but some of them may fail in
noise reduction at high noise levels, especially on noisy edges
with small diffusion coefficient.

B. Transform Domain Filtering

Transform domain filtering uses various basis functions to
represent ultrasound images, in which wavelet based methods
are the most widely explored [123], and the core idea is to
remove the noise-related coefficients in transform domain, for
example, by the means of thresholding methods. For detailed
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TABLE II: Summary of the abovementioned denoising methods.
Category Basic principle Examples Description Advantage Disadvantage

Local adaptive filtering
Rectifies a pixel referring to
local statistics
based on local similarity.

Lee [124] Weighted average value
Simple principle
and fast speed.

The performance
heavily depends on
local window size.

Loupas et al. [125] Median value

Tay et al. [126] Extreme value

Non-local means filtering

Updates pixel by
performing weighted average
on the center pixels of
non-local blocks
with self-similarity measure.

NLM [127] The original NLM work NLM stimulates
important progress.
OBNLM can
well preserve
structural information
with suitable parameters.

High computational cost,
and difficulty in
finding optimal parameters.

OBNLM [128] Introduced NLM for ultrasound denoising by Pearson distance.

Zhan et al. [129] Refined common distance through principal component analysis.

Sudeep et al. [130] Estimated and subtracted independent bias signal due to speckle noise.

Anisotropic diffusion

Encourages internal diffusion
under the guidance of
diffusion coefficients.
The diffusion coefficient
consists of three parts,
edge information,
noise information
and a non-negative
decreasing function.

Perona & Malik [131] Edge information: image brightness gradient.
Noise information: noise threshold.

AD has relatively
low computational cost
and performs well
at low-to-moderate
noise levels.

Some AD methods
may fail in noise reduction
at high noise levels,
especially on noisy edges
with small diffusion coefficient

SRAD [132] Edge information: combination of gradient magnitude operator and Laplacian operator.
Noise information: the division of mean and variance over a homogeneous region.

DPAD [133] Edge information & noise information: a larger window for local statistics.

PFDTV [50] Edge information: well performed edge detection through local phase.
Noise information: integrated into the edge detection.

Sudeb et al. [134] Edge information: represented in another PDE-based method.

TV based method Fidelity term and
regularization term
for smooth and
regularization prior.

Jain et al. [135] Focused on fidelity term and regularization term to use smooth and regularization prior.

Combination of AD and TV Takes advantage of
AD in homogeneous regions
and TV near features.

PFDTV [50] Took advantage of the AD in homogeneous regions and TV near features.

Transform domain filtering Alters coefficients
in the transform domain.

GLM [136] Classified coefficients preliminarily and then
empirically estimated the statistical distributions of the coefficients of feature and noise.

Preserves feature detail well. Might introduces artifacts
or remove details
near edges.

Deep learning based
ultrasound denoising

Network design
for better performance.

Lan et al. [137] Added attention block at the beginning of the network.

Once trained,
deep learning based
denoising is fast.

The model training
is relatively complex,
and the final performance
is greatly affected by
training data and
treatment measures of
different noise levels.

Lee et al. [54] Placed an attention module based on super-pixel maps at the end of each block.

Khor et al. [53] Combined traditional wavelet representation knowledge with deep learning knowledge
for network design to overcome boundary blurring.

Ground truth label
for better performance.

Khor et al. [53] Utilized simulated phantom ultrasound images denoised by traditional methods
as ground truth data.

Feng et al. [138] Used structural preservation prior to improve edge preservation
on real ultrasound images.

Lee et al. [54] Combined deep learning with traditional model-based methods
to eliminate the need for noise-free ultrasound images.

Solutions to
different noise levels
for better performance.

Onur et al. [139] Added different levels of artificial noise to the training data

Lan et al. [137] Trained different models for different noise levels, and selected corresponding model.

Soh et al. [140] Utilized noisy image’s (noise) prior from variational auto-encoder
to facilitate restoration for different noise levels

Hybrid denoising method
Combines different methods
to synthesize advantages
and overcome limitations

Dong et al. [141] Combined non-local operators with TV.

Better denoising performance. Higher computational cost.BM3D [142], SARBM3D [143] Combined non-local block matching, transform domain thresholding, and Wiener Filter.

Khor et al. [53] Combined traditional denoising knowledge with deep learning knowledge
for detail-preserving domain adaptation.

operations, we refer the readers to [119], [123], [149], [150].
Transform domain methods can preserve feature detail well,
but they might introduce artifacts or remove details near edges
due to the real heterogeneous ultrasound images covering
similar coefficients for both speckle noise and anatomical
structure in transform domain.

C. Ultrasound Denoising Deep Learning

Summarizing from [61], [122], [151], [152], we assume that
the most important factors about denoising/despeckling with
deep learning consist of network design, ground truth labeling,
and solutions to different noise levels.

In network design, popular methods are convolution neural
network [137], encoder-decoder structure with residual learn-
ing [60], and generative adversarial network [153]. Newly
developed networks mostly focused on attention mechanism.
Lan et al. [137] added attention block at the beginning of
the network after an initial convolution operation to enhance
image feature and suppress speckle noise. Lee et al. [54]
placed an attention module at the end of each block in
encoder-decoder, calculating attention weights using super-
pixel maps. A multi-attention fusion block [60] is constructed
by several different attention modules for residual encoder-
decoder denoising to focus on the ultrasound texture structures
on multiple domains. There are also works combining tradi-
tional knowledge with deep learning knowledge for network
design. Khor et al. [53] utilized wavelet representation to
overcome boundary blurring for deep learning method, in

which modules of wavelet band normalization and wavelet
residual channel attention were designed in a targeted manner
to learn band features effectively. Recently, cycle-consistent
generative adversarial network for medical image synthesis
and analysis [154], [155] has been explored to transfer the
noisy ultrasound images to the noise-free images [153] by
selecting clinical images as noisy images and the high-quality
images that were despeckled with Gabor-based AD as the
noise-free images for training CycleGAN. However, there is
no widely accepted denoising methods for high-quality image
generation, the unavailability of noise-free clinical ultrasound
images poses a significant obstacle to CycleGAN’s training.

Utilizing models trained with artificially speckled noise and
originally clean natural images, many deep learning methods
have achieved sub-optimal ultrasound denoising performance.
To overcome this drawback, some works conducted transfer
learning on real ultrasound images. Khor et al. [53] utilized
simulated phantom images despeckled by traditional methods
as ground truth data, while Feng et al. [138] used structural
preservation to improve edge preservation on real ultrasound
images by applying l2-norm loss between learned VGG16
structural features from noisy and despeckled images. Deep
learning is combined with traditional model-based methods
to eliminate the need for noise-free ultrasound images. Lee
et al. [54] used deep learning model as image prior regu-
larization while taking TV as common regularization and l1-
norm loss as data fidelity term for iterative optimization. It
successfully solved domain adaptation problem, but required
a time-consuming optimization for each speckled image.
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It’s difficult for a trained denoising model to adapt to the
scenarios of different noise levels. In scenarios of low noise
level, challenge mainly lies in feature preservation especially
in edge detail preservation; while for a high noise level
scenario, challenge lies in both noise reduction and feature
preservation. To adapt to different scenarios in different noise
levels, some methods add different levels of artificial noises to
the training data [139], [156], while Lan et al. [137] trained
different models for different noise levels, and when tackling a
new speckled image, they firstly estimated the noise level and
then selected corresponding model for denoising. In a more
integrated way for an addictive Gaussian noise, Soh et al. [140]
utilized noisy image’s prior from variational auto-encoder to
facilitate image restoration at different noise levels. Due to the
non-symmetrical and spatially correlated characteristics of the
speckle noise [61], modeling the non-Gaussian speckle noise
circumstances at different noise levels is a very challenging
topic that is not touched in existing deep learning models.

Once trained, deep learning based denoising can be fast,
however, the model training is relatively complex, and as
mentioned above, the final performance is greatly affected by
training data and treatment measures of different noise levels.

D. Hybrid Denoising Methods

The advantages and limitations of all abovementioned de-
noising methods have been summarized correspondingly. Hy-
brid methods combine different methods to synthesize differ-
ent advantages and overcome corresponding limitations [53],
[148]. Karamjeet et al. [157] successively utilized the local
and non-local filters to achieve a better performance trade-off
between noise reduction and feature preservation. Gilboa et
al. [158] combined non-local operators with TV to improve
the texture preservation ability of PDE based methods, which
was introduced to tackle multiplicative speckle noise using
split Bregman iterations in [141], [159]. As a milestone of
denoising, BM3D [142] and SARBM3D [143] combined non-
local block matching with transform domain thresholding for
a first denoising, and then used the Wiener filter based on the
matching result of the first step to recover feature details. Deep
learning denoising models that combine traditional denoising
with deep learning knowledge for detail-preserving domain
adaptation have been introduced in Section III-C. Hybrid
denoising methods can achieve better denoising performance
with a high computational cost.

We refer the interested reader to a broad view of Gaussian
noise based image filtering, image synthesis and regularizing
general inverse problems in survey work [150]. However,
handling non-Gaussian speckle noise removal and image seg-
mentation in a holistic view is still underexplored.

IV. MATERIALS AND METHODS

In this section, we describe the datasets, denoising method,
deep learning based segmentation framework, training setup,
segmentation metric [160], and statistical analysis for our
experiments about the denoising effect of deep learning based
ultrasound image segmentation.

TABLE III: Dataset size and dataset split

Dataset Amount of
training images

Amount of
validation images

Amount of
testing images Ratio for split

Dataset 1 378 126 126 6:2:2
Dataset 2 147 16 None 10-folder cross-validation [54]
Dataset 3 14930 2576 2554 5.86:1:1 [163]
Dataset 4 962 324 312 6:2:2

A. Datasets

According to [13], [14], ultrasound imaging is used to
examine many body parts, such as breast, prostate, heart, liver,
nerve, fetus, and so on. Considering efficiency, reproducibil-
ity, and the lack of public ultrasound datasets, we choose
two representative applications, breast ultrasound imaging
and echocardiography imaging. In this way, our experiment
is based on four public and two self-collected ultrasound
datasets. Following are detailed descriptions.

1) Dataset 1: a breast dataset, BUSI1 [161], collected in
Baheya Hospital with LOGIQ E9 and LOGIQ E9 Agile.
Images with one tumour delineated are used in our work.

2) Dataset 2: a breast dataset, Dataset B2 [162], collected
from the UDIAT Diagnostic Centre with Siemens ACUSON
Sequoia C512 system and 17L5 HD linear array transducer.

3) Dataset 3: a big dataset of echocardiography videos,
Echodynamic3 [163], collected from Stanford University Hos-
pital with a resolution of 112×112. As with [163], we mixed
end-systolic and end-diastolic frames in both training and
testing.

4) Dataset 4: an echocardiography dataset, Camus4 [164],
collected from the University Hospital of St Etienne with GE
Vivid E95 ultrasound scanner and GE M5S probe and with a
resolution of 512 × 512. As with [164], our experiment uses
good and medium quality cases, but excludes poor cases. We
segment the left ventricle endocardium. We mix four-chamber
and two-chamber frames, as well as end-systolic and end-
diastolic frames.

5) External Datasets for Test: We additionally collected
115 echocardiography images from the center for cardiovas-
cular medicine of Shanghai chest hospital in Shanghai city and
47 breast ultrasound images from Haimen district traditional
Chinese medical hospital in Nantong city of Jiangsu province
for external cross-dataset testing.

Detailed dataset split of Dataset 1-4 for training, validation,
and testing is shown in Table III.

B. Ultrasound Denoising

As mentioned in the Section III, thousands of denoising
methods can be grouped into four main categories and to-
tally six categories. Due to the impracticality of testing all
denoising methods individually, we selected one or two repre-
sentative methods with public source code for each category.
Specifically, we choose Lee’s filter (Lee) [124], optimized
Bayesian non-local means (OBNLM) [128], detail-preserving
anisotropic diffusion (DPAD) [133], phase asymmetry ultra-
sound denoising with fractional anisotropic diffusion and total

1https://scholar.cu.edu.eg/?q=afahmy/pages/dataset
2http://www2.docm.mmu.ac.uk/STAFF/M.Yap/dataset.php
3https://echonet.github.io/dynamic/
4https://www.creatis.insa-lyon.fr/Challenge/camus/
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variation (PFDTV) [50], generalized likelihood estimation
method (GLM) [136] based on wavelet, denoising convolu-
tional neural networks (DnCNN) [165] and block-matching
3-D algorithm for complex speckle noise removal in synthetic
aperture radar (SARBM3D) [143].

Denoising results after necessary parameter tuning are
shown in Figure 2. The parameters in experiments are typically
initialized based on the recommendations of the original
authors in their respective works [166], [167]. Subsequently,
the despeckling results of 20 images on each dataset were
meticulously evaluated by two experienced medical profes-
sionals, who assessed the performance in aspect of speckle
noise removal and detail preservation. Modifications to the
denoising parameters were implemented in accordance with
expert guidance and feedback to optimize denoising perfor-
mance tailored to the specific dataset and denoising method
employed. For DnCNN, we refer to [156], [165], [168] for
training strategies, specifically, we train on BSD500 [169]
patches with the patch size of 40 and the step of 10 pixels.
We add speckle noise as [128] mentioned:

y = x+
√
x ∗ n (1)

where x represents the noiseless image, n ∼ Gauss(0, σ2),
and y represents generated noisy image. To simulate the im-
ages with different noise levels, we choose σ as 0.05 : 0.05 : 2.
We train the model for 50 epochs with Adam optimizer, loss
of mean squared error and the batch size of 128. We save the
model with minimum validation loss. The learning rate starts
from 0.0001, and halves at 40%, 60%,80% of the training
respectively.

C. Image Segmentation Deep Learning Framework
We have described in the Section II that the important

factors of deep learning based ultrasound image segmentation
mainly include input data and labeling, model, and loss func-
tion. For simplicity, we consider transformation-based data
augmentation, full supervision and semi-supervision, and the
loss function of the sum of binary cross-entropy and Dice
coefficient loss. In regard to deep learning model, we use
basic models of U-Net [1] baseline, module changes based
on attention and multi-scale mechanism, and heuristically
speckle-robust models of RF-Net [6] with residual refinement
and CDM [7] with transformer branch and cross-image depen-
dency. For the module changes based on attention and multi-
scale mechanism, we selected SK-U-Net [2] and CE-Net [3]
for breast ultrasound segmentation and DAEFF-Net [4] for
echocardiography segmentation. These networks are proven
to be useful for corresponding anatomy in many researches.
We simply selected networks with public source code.

We train semi-supervised mean teacher [170] model with
few labeled data and much unlabeled data. We simply use the
largest Dataset 3 for semi-supervised learning. As described
in [18], we update the student model with segmentation loss
from labeled data and consistency loss from unlabeled data,
and then update the mean teacher model with an exponential
moving average. We use α = 0.99, labeled batch size of 2 and
unlabeled batch size of 30. The epoch for ramping up and the
consistency weight is tuned for best performance.

We implement multi-task denoising-segmentation with SFS
block [5] for cross-task feature fusion. We compare multi-
task segmentation with holistic single-task segmentation.
The ground-truth for denoising is despeckled data by Lee,
OBNLM, DPAD, PFDTV, GLM, DnCNN, SARBM3D.

D. Training Setup

1) Variable Controlling Method: For a fair evaluation,
we consider a denoising as the only input variables sig-
nificantly associated with final segmentation performance in
experiments. However, deep learning results can show large
differences among identical training runs with the same input
data and code due to nondeterminism [8], [9], posing problems
for tightly controlled experimental setups. One solution is to
average the effect of variables on 30 repeated runs [171],
[172], however, it can be too time-consuming. According to
pytorch [8], [9], [173], another solution is to control roots of
variability to achieve reproducibility, which in our case is the
same experimental setup. First, sources of randomness should
be controlled, such as the model weights initialization, the
composition of mini-batches, and the augmentation. Second,
nondeterministic algorithms, for example, CUDA convolution,
should be replaced with deterministic algorithms. Specifically,
we set fixed random seed (seed = 0) for related codebase
(python, numpy, pytorch) and try the best to use deterministic
operations, and average the results on 30 repeated runs when
non-deterministic algorithms, for example, tensor interpolation
[174], are necessary for some experiments.

2) Training Details for Specific Task: The training details
for all segmentation tasks are listed in Table IV. For a specific
task, we keep the same training strategies, except for the
only difference in despeckling methods. Dataset split has
been described in section A. of Materials and Methods. We
uniformly use the Adam optimizer and assure that the training
process has been over-fitting when it ends, saving the model
with the lowest validation loss. For semi-supervised training,
the number of labeled training data is 200, and we use the same
valid and test subsets with full supervision for convenience.

E. Segmentation Metric

We use some widely-accepted segmentation metrics5 of
Accuracy, Precision, Recall, Dice Coefficient (Dice), surface
dice coefficient(sDice)6, 95% Hausdorff distance (HD), and
average symmetric surface distance (ASSD) to comprehen-
sively evaluate segmentation performance in both size and
shape. we refer the readers to [160] for more discussion about
segmentation metrics.

Accuracy, Precision, Recall and Dice are formulated as:

Accuracy = (TN + TP )/(TN + TP + FP + FN)

Precision = TP/(TP + FP )

Recall = TP/(TP + FN)

Dice = 2TP/(2TP + FP + FN)

(2)

5https://loli.github.io/medpy/metric.html
6https://github.com/deepmind/surface-distance
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Fig. 2: Denoising results after necessary parameter tuning to avoid artifact. On the left of the figure, a-f represent Dataset 1-4,
external breast ultrasound dataset, and external echocardiography dataset, respectively. And 1-7 represent despeckling results
of Lee, OBNLM, DPAD, PFDTV, GLM, DnCNN, SAR-BM3D, respectively. Lee: window size = 3. OBNLM: M = 7, alpha
= 3, h = 0.7, offset = 100. DPAD: (time step and iterations) breast ultrasound datasets, 0.2 and 100; Dataset 3 and external
echocardiography dataset, 0.1 and 30; Dataset 4, 0.02 and 30. PFDTV: ∆t = 0.15, s = 15, k0 = 20, alpha = 1.2, niter = 8. GLM:
threshold factor = 3, window size = 3, decomposition scale = 4. DnCNN: has been described in the context. SAR-BM3D:
number of looks = 1, decomposition level = 3, block(window) size 8× 8, search area size 39× 39. The right side of the figure
shows absolute difference maps between the despeckled results and original images.

in which, T/F and P/N indicate the amount of pixels which
are predicted consistently/inconsistently with the ground truth
and positive/negative respectively. The combination of T/F and
P/N represents a logical “AND”.

The equations for 95% HD and ASSD are as follows:

95% HD = max{95%sup (d(x, Y ))
x∈X

, 95%sup (d(X, y))
y∈Y

}

ASSD =
1

nX + nY
(
∑
x∈X

d(x, Y ) +
∑
y∈Y

d(X, y))

d(x, Y ) = inf
y∈Y

d(x, y)

d(x, y) = ||x− y||2
(3)

in which, x and y represent single point on the surface
of segmentation mask, X and Y represent the surface of
segmentation mask with many points, nX and nY represent
the amount of points on the surface X and Y respectively, inf
gets minimal value from following expression, and 95%sup
gets 0.95 quantile from following expression.

Surface dice coefficient measures the surface overlap of two
masks at a clinically accepted distance tolerance, which is set
as 1 pixel in our experiments.

F. Statistical Analysis

Friedman test [175]–[177] and Nemenyi post hoc test [177],
[178] are utilized to evaluate the performance difference

among all 8 versions of datasets (the original dataset and 7
despeckled datasets). When Friedman test results in p < 0.05
that indicates a statistically significant difference, Nemenyi
post hoc test will then be run to show the detailed difference. In
Nemenyi post hoc test, if the average rank difference between
two methods exceeds the critical difference, then there may
exists statistically significant performance difference between
the two methods. Friedman test and Nemenyi post hoc test
can be respectively done by scipy.stats.friedmanchisquare7 and
Orange.evaluation.compute CD8.

Paired t-test and Wilcoxon signed-ranks test are used to find
the performance difference between the original dataset and
a specifically despeckled dataset. Paired t-test is commonly
used to evaluate segmentation difference between different al-
gorithms [179]–[181], however, according to [182], Wilcoxon
signed-ranks test is more sensitive than the paired t-test. We
apply both paired t-test and Wilcoxon signed-ranks test to
show the relative amplitude of difference. Implemented by
scipy.stats.ttest ind and scipy.stats.wilcoxon, these paired tests
can directly indicate a difference of greater or less.

V. EXPERIMENTAL RESULTS

The experimental results consist of segmentation metrics,
statistical analysis results, and some representative visualized

7https://docs.scipy.org/doc/scipy
8https://orange3.readthedocs.io/en/latest/
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TABLE IV: Training details for different segmentation tasks

Tasks Data
augmentation

Input size Input
channel

Batch size Total training
epochs

Learning rate
scheduler

Dataset 1

U-Net a 256 1 4 200 c

SK-U-Net a 256 1 4 100 d

CE-Net a 256 1 4 80 d

RF-Net a 256 1 4 80 d

CDM a 256 1 4 200 c

Multi-task a 256 1 2 200 c

Dataset 2

U-Net SK-U-Net a 256 1 4 200 c

CE-Net a 256 1 4 80 d

RF-Net a 256 1 4 80 d

CDM a 256 1 4 200 c

Multi-task a 256 1 2 200 c

Dataset 3

U-Net DAEFF-Net b 112 3 32 25 e

RF-Net b 128 3 32 25 e

CDM b 112 3 32 25 e

U-Net
(semi-supervision)

b 112 3 32 100 f

Multi-task b 112 3 8 40 e

Dataset 4

U-Net DAEFF-Net b 512 1 4 40 e

RF-Net b 512 1 4 25 e

CDM b 512 1 4 25 e

Multi-task b 256 1 2 40 e

a. random rotation in a range, random shift, random scaling, and random rotation of multiples of 90°
b. random rotation in a range, random shift, and random scaling
c. constant learning rate of 0.0001
d. initial learning rate of 0.0001, halves when the loss does not drop for 7 consecutive epochs,
with the least learning rate of 5e-6
e. initial learning rate of 0.0001, halves at 40%, 60% and 80% of the training process
f. initial learning rate of 0.0001, halves when the loss does not drop for 5 consecutive epochs,
with the least learning rate of 1e-6

segmentation results. For clarity, we place all detailed
experimental results in the Appendix A/B and analyse
the results in this section. Firstly, we introduce the meaning
of statistical analysis results in Table A1-A14, where Table
A1-A4 is for fully-supervised intra-dataset testing, Table A5
is for semi-supervised intra-dataset testing, Table A6-A13
is for fully-supervised cross-dataset testing, and Table A14
is for multi-task intra-dataset testing. Secondly, we analyse
Friedman test results. Thirdly, we analyse paired test results
on intra- and cross-dataset testing. Fourthly, we show some vi-
sualized segmentation results in Figure B1-B7 to illustrate the
consistency of visualization results and statistical test results.
Finally, we summarize the overall denoising performance.

A. Meaning of Tables

Segmentation metrics, Friedman test results and paired test
results are shown in Table A1-A13.

1) Friedman Test and Nemenyi post hoc Test: Friedman test
is applied based on median metrics in the table. The average
rank and p-value for Friedman test are shown in the bottom
and in the top left corner, respectively. Smaller average rank
means possibly better performance. A p-value less than 0.05
deserves a Nemenyi post hoc test.

2) Paired Test: As shown in the bottom of Table A1,
paired test results are shown in the form of different arrows
and shadings. The upward and downward arrows indicate
statistically better and worse performance, respectively. The
statistical significant difference of ↑ (↓),⇈ (⇊),⇑ (⇓) are
indicated by Wilcoxon signed-ranks test, paired t-test, and
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both test, respectively. For a specific combination of dataset,
model, and denoising method, if there are more than 3 of
7 segmentation metrics evaluated as statistically better/worse
than the original dataset, then this combination will be set as
the shadings of light/dark grey.

The paired test results in different rows describe the perfor-
mance difference of a despeckled dataset compared with the
original dataset. The paired test results in the original column
describe the performance difference of a model compared
with U-Net. Particularly, the paired test results in the original
column of Table A5 describe the performance difference of
semi-supervised U-Net compared with the fully supervised U-
Net in Table A3.

B. Result and Analysis of Friedman Tests and Nemenyi post
hoc Tests

For the Friedman tests in Table A1-A14 indicating sta-
tistically significant difference, Nemenyi post hoc tests are
applied in Figure A1, A2 and A3 to show specific differences.
Particularly, we additionally show Nemenyi post hoc tests for
all the intra-dataset and cross-dataset testing results in Figure
A1(c) and A2(k), respectively. For example, Figure A1(a)
shows that OBNLM and DnCNN despeckled Dataset 2 are
statistically significantly better than DPAD despeckled Dataset
2.

To sum up, no denoising method performs statistically
better than using the original dataset directly. DPAD [133]
and Lee have a relatively better overall rankings than other
denoising methods in the intra-dataset tesing (Figure A1(c))
and cross-dataset testing (Figure A2(k)), respectively.

C. Result and Analysis of Paired Tests

1) Intra-dataset Testing: All paired test results for intra-
dataset testing of denoising pre-processing are shown in Table
A1-A5. Analysis of these paired tests can be concluded in
Table V.

As a whole, good effect from denoising pre-processing is
unstable and slight (if exists) in various medical ultrasound
deep learning scenarios.

The unstability in Dataset 1 and Dataset 2 with CDM
network: in Dataset 1, CDM network has good despeckling
effect, while the despeckling effect disappears when dealing
with Dataset 2. The unstability in Dataset 4 with U-Net,
DAEFF-Net, RF-Net: using U-Net has no denoising effect,
and using DAEFF-Net has good denoising effect, while no
denoising effect is achieved when using RF-Net. The reason
maybe that U-Net is not sensitive to small boundary and detail
changes brought by denoising; while DAEFF-Net is superior to
U-Net in boundary refinement due to the attention mechanism,
and can sense subtle boundary changes from denoising; while
RF-Net already has boundary/residual refinement mechanism
in its own model architecture, and so that subtle boundary
changes from denoising is of little importance. There are
three cases with good denoising effect in conditions of fixed
dataset and model: (a) Dataset 1 with CDM network; (b)
semi-supervision on Dataset 3 with smaller dataset size than
the fully supervised training and higher noise levels than

Dataset 4; (c) Dataset 4 with large image size, medium dataset
size and slightly better performed DAEFF-Net. However, for
each dataset, when using the best-performing model (see the
specific metrics, RF-Net for Dataset 1, CDM for Dataset 2,
U-Net for Dataset 3, RF-Net for Dataset 4), denoising brings
no good effect.

The improvement brought by denoising is much weaker
than the good ones by stronger model and more training data.
It can be seen in the original columns of Table A1-A5 that
most improvement by stronger model and more training data
can be indicated by both paired t-test and Wilcoxon signed-
ranks test, while statistically and significantly better denoising
effect indicated by both tests only appears in semi-supervised
U-Net on PFDTV despeckled Dataset 3.

Considering the single denoising method, DPAD [133]
performs the best. Only DPAD gets non-worse performance in
all cases, and DPAD despeckled datasets perform statistically
better than original datasets in 6 of the total 19 cases.

Regarding the multi-task learning of denoising and
segmentation with SFS block [5] based feature fusion (in
Table A14), we have seen the obvious performance degra-
dation compared with the holistic single-task segmentation
learning.

2) Cross-dataset Testing: Firstly, in cross-dataset testings
(Table A6-A13), severe heterogeneity brings a large per-
formance drop compared with intra-dataset testings, for ex-
ample, U-Net on intra Dataset 1 testing gets the dice of
0.9210(0.0539) (median metircs and interquartile range), while
U-Net on cross testing of testing Dataset 2 with models trained
based on Dataset 1 gets the dice of 0.8781(0.3334).

Secondly, as a whole, denoising performs badly compared
with using the original dataset directly, with 72 ✔, 66 ● and
114 ⊠ in Table VI, reflecting unstable denoising effect to some
extent. Good denoising effect in some cases of intra-dataset
testing has been weakened or lost in cross-dataset testing. Lee
has the highest proportion of cases with good denoising effect,
with 21 ✔, 4 ● and 11 ⊠.

Thirdly, cross-dataset ultrasound denoising improvement is
weak and far from being able to alleviate the performance
degradation due to the severe heterogeneity in cross-dataset
deep learning of ultrasound segmentation, and the performance
metrics are still very low compared with intra-dataset testing.

In summary, it is impossible to get stable and con-
siderable segmentation improvement from denoising in
the training and testing stages for cross-dataset testing
purpose. More emphasis should be placed on a generalized
self-supervised deep learning model, larger heterogeneous
datasets, strong self-correcting learning framework for a
wide variety of heterogeneity problems [62], [183]–[185].

D. Visualization Results
To illustrate the overall similar performance of different de-

noising methods in intra-dataset testing indicated by Friedman
tests, visualized segmentation results of U-Net on Dataset 1-4
are shown in Figure B1-B4. Further, to illustrate the statis-
tically better or worse performance indicated by paired tests
on more than 3 segmentation metrics, visualized segmentation
results of 3 tasks are shown in Figure B5-B7.
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TABLE V: Intra-dataset testing analysis. The PSNR is calculated by comparing the original dataset with the DPAD denoised
dataset, and lower PSNR means higher noise level. The dataset size indicates the size of fully supervised training data. The
arrows after the model name, ↑ (↓),⇈ (⇊),⇑ (⇓) (has the same meaning with section V-A), indicate the performance of this
model is statistically significantly different from corresponding fully-supervised U-Net. The signs of ✔, ● and ⊠ represent
good, no and bad denoising effect, respectively.

Dataset Model Denoising effect (22 ✔, 87 ●, 24 ⊠)
Dataset name PSNR Image size Dataset size Lee OBNLM DPAD PFDTV GLM DnCNN SARBM3D

Dataset 1 43.8604 256 medium (378)

U-Net ⊠ ● ● ● ⊠ ● ●
SK-U-Net ● ● ● ✔ ● ● ⊠
CE-Net⇑ ● ● ● ● ● ● ⊠
RF-Net⇑ ● ● ● ● ● ● ●
CDM⇈ ✔ ✔ ✔ ● ● ● ✔

Dataset 2 39.9187 256 small (147)

U-Net ● ● ● ● ⊠ ● ●
SK-U-Net ● ● ● ● ● ✔ ●
CE-Net⇑ ● ✔ ● ● ● ● ●
RF-Net⇑ ● ● ● ● ● ● ●
CDM⇑ ● ● ● ● ● ● ●

Dataset 3 40.3899 112 large (14930)

U-Net ⊠ ⊠ ✔ ● ⊠ ● ⊠
DAEFF-Net⇓ ⊠ ⊠ ✔ ● ⊠ ⊠ ⊠

RF-Net⇓ ✔ ● ✔ ● ⊠ ✔ ●
CDM⇓ ● ⊠ ● ● ⊠ ✔ ⊠

small (200) U-Net⇓ ✔ ⊠ ✔ ✔ ⊠ ✔ ⊠

Dataset 4 53.606 512 medium (962)

U-Net ● ● ● ● ● ● ●
DAEFF-Net⇑ ✔ ✔ ✔ ● ✔ ● ✔

RF-Net⇑ ● ● ● ● ● ● ●
CDM⇑ ⊠ ⊠ ● ⊠ ● ● ●

(1) Considering all 133 cases as a whole, good denoising effect is unstable and slight compared with good model effect, with 22 ✔, 87 ● and 24 ⊠.
(2) Three cases with good denoising effects are: (a) Dataset 1 with CDM network;

(b) the semi-supervision on Dataset 3 with smaller dataset size than the fully supervised training, while also having higher noise level than Dataset 4;
(c) Dataset 4 with large image size, medium dataset size and slightly better performed DAEFF-Net.

(3) Considering single denoising method, DPAD performs the best.
(4) The improvement brought by denoising is much weaker than the improvements by stronger models and more training data.
(5) For each dataset, when using the best-performing model (RF-Net, CDM, U-Net, RF-Net for Dataset 1-4), despeckling brings no good effect.

TABLE VI: Cross-dataset testing analysis. The arrows before and after the model name indicate the performance of this model
compared with U-Net on intra-dataset and cross-dataset testing studies respectively.

Intra-dataset training and testing Cross-dataset testing Models Denoising effect (72 ✔, 66 ●, 114 ⊠)
Dataset name PSNR Image size Good denoising effect Dataset name PSNR Lee OBNLM DPAD PFDTV GLM DnCNN SARBM3D

Dataset 1 43.8604 256

Dataset 2 39.9187

U-Net ⊠ ⊠ ⊠ ⊠ ● ● ⊠
SK-U-Net⇓ ✔ ✔ ✔ ✔ ✔ ✔ ✔
⇑CE-Net⇑ ✔ ● ⊠ ● ● ● ●
⇑RF-Net⇑ ● ● ⊠ ● ● ● ●

✔ ⇈CDM⇑ ✔ ✔ ● ✔ ● ✔ ✔

External bus 40.6974

U-Net ⊠ ● ● ✔ ● ✔ ●
SK-U-Net⇓ ✔ ● ● ✔ ● ⊠ ●
⇑CE-Net⇑ ✔ ⊠ ⊠ ⊠ ⊠ ⊠ ✔
⇑RF-Net⇑ ✔ ● ⊠ ● ● ● ✔

✔ ⇈CDM↑ ✔ ● ⊠ ● ⊠ ● ✔

Dataset 2 39.9187 256

Dataset 1 43.8604

U-Net ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠
↑SK-U-Net⇑ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠
⇑CE-Net⇑ ✔ ✔ ✔ ● ✔ ● ✔
⇑RF-Net⇑ ✔ ● ⊠ ✔ ✔ ✔ ⊠
⇑CDM⇑ ✔ ● ⊠ ✔ ✔ ● ✔

External bus 40.6974

U-Net ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ●
SK-U-Net↑ ⊠ ⊠ ⊠ ⊠ ⊠ ● ●
⇑CE-Net ✔ ● ● ● ✔ ● ✔
⇑RF-Net⇓ ✔ ⊠ ⊠ ● ● ● ●
⇑CDM↓ ✔ ● ⊠ ⊠ ● ● ✔

Dataset 3 40.3899 112

DPAD

Dataset 4 53.606

U-Net ✔ ✔ ✔ ✔ ✔ ✔ ✔
DPAD ⇓DAEFF-Net⇑ ✔ ⊠ ✔ ⊠ ⊠ ⊠ ⊠
DPAD ⇓RF-Net⇑ ✔ ⊠ ✔ ⊠ ⊠ ⊠ ⊠

⇓CDM⇑ ✔ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠
DPAD

External echo 44.5495

U-Net ⊠ ⊠ ● ⊠ ⊠ ⊠ ⊠
DPAD ⇓DAEFF-Net↓ ● ⊠ ⊠ ⊠ ⊠ ⊠ ⊠
DPAD ⇓RF-Net⇓ ● ⊠ ✔ ⊠ ⊠ ⊠ ●

⇓CDM↓ ● ⊠ ⊠ ⊠ ⊠ ⊠ ⊠

Dataset 4 53.606 512

Dataset 3 40.3899

U-Net ✔ ✔ ✔ ✔ ✔ ✔ ✔
✔ ⇑DAEFF-Net⇑ ✔ ⊠ ● ● ⊠ ● ⊠

⇑RF-Net⇑ ⊠ ✔ ⊠ ⊠ ● ⊠ ⊠
⇑CDM⇑ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠

External echo 44.5495

U-Net ✔ ✔ ✔ ✔ ⊠ ✔ ✔
✔ ⇑DAEFF-Net⇑ ✔ ● ● ● ● ● ●

⇑RF-Net⇑ ⊠ ● ⊠ ● ⊠ ⊠ ⊠
⇑CDM⇑ ⊠ ⊠ ⊠ ⊠ ⊠ ✔ ⊠

(1) Considering all 252 cases as a whole, good despeckling effect is unstable and slight compared with good model effect, with 72 ✔, 66 ●, 114 ⊠.
(2) From the lines where intra-dataset testing with good denoising effect in the table,

it can be seen that good denoising effect in some cases of intra-dataset testing has been weakened or lost in cross-dataset testing.
(3) Considering the single denoising method, Lee has the best performance, with 21, 4 and 11 cases of good, no and bad denoising effects, respectively.
Good denoising effect is unstable in cross-dataset testing compared with using the original dataset directly.
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TABLE VII: Time cost (s) for 7 denoising methods and 6
datasets

Lee OBNLM DPAD PFDTV GLM DnCNN SARBM3D
Dataset 1 0.042 5.841 2.246 3.425 276.026 0.034 68.452
Dataset 2 0.010 3.839 1.322 2.276 6.071 0.023 4.761
Dataset 3 0.028 0.568 0.101 0.309 1.339 0.056 7.026
Dataset 4 0.026 10.556 1.172 6.623 6.628 0.008 127.991
External

bus 0.013 4.149 1.342 2.329 122.605 0.025 50.619

External
echocardiography 0.026 4.206 1.203 2.143 28.997 0.024 54.578

E. Overall Denoising Performance

In regard to the speed of method, we have used Lee [124]
and DnCNN [165] methods that have the shortest running
time, while also implementing DPAD [133] as a relatively
faster method. The average time cost for 6 datasets and 7
denoising methods is shown in Table VII. Among these data,
the running time for DnCNN is calculated on a computer with
Nvidia GeForce RTX 3090, Intel Core i9-10900K CPU, and
64 GB DDR4 memory, and the rest is calculated on a computer
with Matlab R2021a, Intel Core i7-8700K CPU, and 16 GB
memory. The order from fast to slow is Lee, DnCNN, DPAD,
PFDTV, OBNLM, GLM, and SARBM3D.

Regarding the denoising effect, we have described that
DPAD [133] has the best performance in intra-dataset testing,
and Lee [124] has relatively better performance in cross-
dataset testing. Considering both speed and denoising ef-
fects, we recommend DPAD and Lee for relatively better
denoising hyper-parameter.

VI. DISCUSSION

A comprehensive denoising-segmentation cross benchmark-
ing is designed to assess whether denoising is necessary
for deep learning ultrasound segmentation, when acquiring a
performance balance between denoising and segmentation in
achieving not only the speckle noise robustness but also in im-
proving the segmentation performance. We comprehensively
cover three denoising-segmentation solutions, some state-of-
the-art denoising and deep learning models, segmentation
metrics, statistical analysis, as well as ultrasound deep learn-
ing scenarios and additionally eliminate the nondeterminism
effect in the deep learning training. However, there are some
limitations in our method. Firstly, we overlook the situation
where speckle pattern is a beneficial feature [186]–[189] since
speckles are produced by microstructure-like scatterers with a
size smaller than the wavelength of ultrasonic pulse waves in
living soft tissues [190], [191]. Speckle pattern has been used
to represent echocardiography motion [192], [193], calculate
breast tumour classification feature [194], [195]. Secondly,
our experiment is mostly based on random 6:2:2 dataset split
due to the running efficiency and the certain rationality of
random 6:2:2 dataset split. We simply use cross-validation on
the smallest Dataset 2.

Generally, the segmentation performance improvement from
denoising pre-processing is more unstable and slighter (if
exists) compared with the improvement from holistic deep
learning segmentation framework. It might be noted that the
denoising effect is similar to the unstable effect of deep

learning training hyper-parameter that can yield unpredictable
outcomes—either small positive/negative or neutral effect.

However, the context-aware and self-correcting capabil-
ity of holistic deep segmentation framework is contem-
plated as a major performance boost for ultrasound image
segmentation. Specifically, data-driven and label-guided deep
learning approaches have demonstrated the ability to acquire
robust features and reduce speckle noise. Techniques like
attention mechanisms, transformers, multi-scale architectures
have been proven to be valuable building blocks for image
segmentation. Additionally, task-adaptive strategies such as
boundary/residual correction and refinement and the incorpo-
ration of motion-enhanced feature representation and multi-
analysis task-aware learning have gained popularity in model
design. Moreover, small detail enhancement and adjustment
at the boundaries of input data typically can be efficiently
adapted and/or corrected by the holistic deep learning system,
where the system’s self-correction and segmentation refine-
ment are partially achieved by the framework components
(Figure 1) and can be exploited by contextual perception
(attention, transformer, multi-scale architectures and etc.)
and uncertainty rectification (e.g., boundary/residual cor-
rection and refinement) towards the fine segmentation.

Our experiments also demonstrate that multi-task denoising-
segmentation with SFS block [5] based feature fusion does
cause a segmentation performance degradation. This issue is
directly due to the introduction of interference from the denois-
ing sub-network into the segmentation sub-network within the
SFS block-based feature fusion. While the possible root causes
consist of imperfect denoising ground truth, sub-optimal multi-
task feature fusion, and the inherent unreliability of the multi-
task denoising-segmentation paradigm, which compels low-
level image processing tasks to complement mid- and high-
level image processing tasks.

Further experiments are required to pinpoint the exact cause
of degraded multi-task denoising-segmentation performance.
Nevertheless, it is theoretically probable that significant effort
will be expended with the expectation of sub-optimal results.
Firstly, acquiring perfect ground truth for deep learning-
based ultrasound denoising has long been a challenging issue.
Secondly, some multi-task learning have their limitations since
the cross-task gap may exist due to the different reasoning
and input-output workflows. Furthermore, different task-aware
learning simply focused on the structural representation of
task-specific entities, it may miss some important task-agnostic
semantic information or some unstructured representation in
the contextual emergence for the overall performance boosting.

In the deep learning segmentation review section, we have
summarized various research directions, in which good feature
representation, generalization, stability, and interpretability
have become more and more popular recently. For example,
some researches published in top journals are very concerned
about generalization topics [183], [185], [196], [197] that are
closely related to domain adaptation and disentangling rep-
resentation learning. Continuing the practice of denoising for
speckle removal contradicts the more favorable path toward the
generalization for a wide variety of heterogeneity problems.
Furthermore, the emergence of robust universal segmentation
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model, such as Segment Anything [198]–[200] and camou-
flaged object segmentation [201]–[203] in open-world deep
learning [204], [205], has brought a new era of universal
and interactive image understanding that might be generally
and contextually immune to the complex noises. It will take
a long time to generate truly universal image understanding
without manual point/ROI prompt or fine-tuning on specific
task, however, the exploratory work such as Segment Anything
greatly enhanced the confidence of domain adaptation and
heterogeneity solutions that also should be robust to the
complex speckle noise.

VII. CONCLUSION

We have fully established a denoising-segmentation cross
benchmarking from the unified perspective of segmentation
and denoising, and gives a certain conclusion about the denois-
ing effect in deep learning based ultrasound image segmen-
tation. The holistic deep framework outperforms despeckling
pre-processing and multi-task denoising-segmentation meth-
ods in addressing the challenge of speckle noise and improving
segmentation performance.

Regarding denoising as a kind of hyper-parameter in deep
learning framework, a broader perspective is to unify con-
textual perception and uncertainty rectification in a more
integrated segmentation framework with simultaneous speckle
robustness, whatever the source of every individual uncertainty
in single-task deep learning. It is then a holistic context-
aware and self-correcting deep learning segmentation problem.
The proposed cross benchmarking work can be used as an
important reference for researches in the field of deep learning,
medical ultrasound image analysis, synthetic aperture radar
[206], [207] or optical coherent imaging [208], [209].
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[182] J. Demšar, “Statistical comparisons of classifiers over multiple data
sets,” The Journal of Machine learning research, vol. 7, pp. 1–30,
2006.

[183] B. Billot, C. Magdamo, Y. Cheng, S. E. Arnold, S. Das, and
J. E. Iglesias, “Robust machine learning segmentation for large-scale
analysis of heterogeneous clinical brain mri datasets,” Proceedings of
the National Academy of Sciences, vol. 120, no. 9, p. e2216399120,
2023. [Online]. Available: https://www.pnas.org/doi/abs/10.1073/pnas.
2216399120

[184] M. Zhang, L. Qu, P. Singh, J. Kalpathy-Cramer, and D. L. Rubin,
“Splitavg: A heterogeneity-aware federated deep learning method for
medical imaging,” IEEE Journal of Biomedical and Health Informatics,
vol. 26, no. 9, pp. 4635–4644, 2022.

[185] C. Liang, B. Cheng, B. Xiao, Y. Dong, and J. Chen, “Multilevel
heterogeneous domain adaptation method for remote sensing image
segmentation,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 61, pp. 1–16, 2023.

[186] J. A. Noble and D. Boukerroui, “Ultrasound image segmentation: a
survey,” IEEE Transactions on medical imaging, vol. 25, no. 8, pp.
987–1010, 2006.

[187] Y. Chen, Z. Xiong, Q. Kong, X. Ma, M. Chen, and C. Lu, “Circular
statistics vector for improving coherent plane wave compounding
image in fourier domain,” Ultrasonics, vol. 128, p. 106856, 2023.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0041624X22001627

[188] S. Goudarzi, A. Basarab, and H. Rivaz, “A unifying approach to
inverse problems of ultrasound beamforming and deconvolution,” IEEE
Transactions on Computational Imaging, vol. 9, pp. 197–209, 2023.

[189] L. S. Nguon and S. Park, “Extended aperture image reconstruction
for plane-wave imaging,” Ultrasonics, vol. 134, p. 107096, 2023.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0041624X23001725

[190] D. Hyun, L. L. Brickson, K. T. Looby, and J. J. Dahl, “Beamforming
and speckle reduction using neural networks,” IEEE Transactions on
Ultrasonics, Ferroelectrics, and Frequency Control, vol. 66, no. 5, pp.
898–910, 2019.

[191] D. Hyun, A. Wiacek, S. Goudarzi, S. Rothlübbers, A. Asif, K. Eickel,
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APPENDIX

A. Experimental data

TABLE A1: Median metrics for intra-dataset testing of Dataset
1 (interquartile range is given in brackets). The meaning of
paired test results is described in V-A and at the bottom of
this table.

Friedman test’s p-value: 0.5636 (>0.05)
Nemenyi post hoc test: None Original Lee OBNLM DPAD PFDTV GLM DnCNN SARBM3D

U-Net

Accuracy 0.9942(0.0198) 0.9913(0.0201)↓ 0.9921(0.0199) 0.9934(0.0157) 0.9926(0.0183) 0.9926(0.0219)↓ 0.9931(0.0157) 0.9936(0.0173)
Precision 0.9365(0.0701) 0.9297(0.1181)⇓ 0.9385(0.0710) 0.9455(0.0703) 0.9329(0.0913)↓ 0.9412(0.0990) 0.9417(0.0729) 0.9293(0.0881)⇓

Recall 0.9303(0.0826) 0.9315(0.0629) 0.9367(0.0818) 0.9423(0.0843) 0.9472(0.0707)↑ 0.9208(0.0752)↓ 0.9393(0.0852) 0.9502(0.0808)↑
Dice 0.9210(0.0539) 0.9183(0.0851)⇓ 0.9227(0.0648) 0.9306(0.0593) 0.9206(0.0645) 0.9197(0.0771)↓ 0.9288(0.0610) 0.9216(0.0823)

Surface Dice 0.5277(0.3484) 0.4459(0.3633)↓ 0.4668(0.3510) 0.4974(0.3836) 0.4477(0.3490)↓ 0.4787(0.3451)↓ 0.4994(0.3769) 0.4822(0.3816)
95% HD 5.0000(9.9864) 7.9431(36.7927)⇓ 6.6319(13.0685) 5.0000(9.1778) 5.0000(12.2315) 6.4031(20.2658)⇊ 6.0000(8.1716) 5.3852(12.5563)

ASSD 1.8414(2.8380) 3.0469(7.9433)⇓ 2.4152(3.7626) 1.9146(2.6199) 2.1021(3.3257) 2.2256(3.9065)⇓ 2.2639(2.1248) 2.0469(3.8590)

SK-UNet

Accuracy 0.9931(0.0180) 0.9928(0.0176) 0.9940(0.0176) 0.9939(0.0177) 0.9938(0.0192) 0.9931(0.0173) 0.9934(0.0189) 0.9917(0.0190)↓
Precision 0.9472(0.0720)↑ 0.9257(0.0891)⇓ 0.9335(0.0803)↓ 0.9365(0.0886)↓ 0.9448(0.0713) 0.9288(0.0845)↓ 0.9259(0.0879)↓ 0.8837(0.1088)⇓

Recall 0.9326(0.1004)↓ 0.9517(0.0620)⇑ 0.9501(0.0800)↑ 0.9481(0.0988)↑ 0.9458(0.0935)↑ 0.9547(0.0715)⇑ 0.9607(0.0817)↑ 0.9708(0.0559)⇑
Dice 0.9241(0.0659) 0.9226(0.0645) 0.9279(0.0510) 0.9214(0.0560) 0.9253(0.0548)↑ 0.9295(0.0599) 0.9214(0.0586) 0.9146(0.0635)↓

Surface Dice 0.4537(0.3844) 0.4351(0.3556) 0.4460(0.2984) 0.4621(0.3624) 0.4829(0.3537) 0.4258(0.3239) 0.4386(0.3095) 0.3816(0.2950)⇓
95% HD 5.0000(9.8754) 5.6569(11.8661) 4.4721(8.9262) 5.0000(8.1716) 4.4721(8.2033)↑ 5.0000(11.1845) 5.0000(10.0000) 6.0828(9.8386)

ASSD 2.0127(2.9337) 2.1802(3.2366) 2.0089(2.6579) 1.9270(2.4596) 1.8560(2.9947)↑ 2.0204(2.9217) 1.9828(2.4327) 2.4021(2.9609)↓

CE-Net

Accuracy 0.9938(0.0137)↑ 0.9938(0.0124) 0.9936(0.0124) 0.9935(0.0121) 0.9936(0.0146) 0.9939(0.0158) 0.9937(0.0132) 0.9937(0.0138)↓
Precision 0.9448(0.0509)↑ 0.9405(0.0555)↓ 0.9395(0.0507)↓ 0.9425(0.0534)↓ 0.9424(0.0514)↓ 0.9407(0.0506)↓ 0.9379(0.0513)↓ 0.9433(0.0589)↓

Recall 0.9424(0.0921) 0.9462(0.0853)↑ 0.9469(0.0843)↑ 0.9505(0.0885)↑ 0.9461(0.0881)↑ 0.9450(0.0849)↑ 0.9515(0.0789)↑ 0.9465(0.0876)↑
Dice 0.9288(0.0504)↑ 0.9298(0.0533) 0.9280(0.0585) 0.9294(0.0534) 0.9307(0.0530) 0.9267(0.0495) 0.9305(0.0553) 0.9304(0.0552)↓

Surface Dice 0.5178(0.3669) 0.5142(0.3711) 0.4892(0.3470) 0.5166(0.3378) 0.4961(0.3609) 0.5018(0.3601) 0.4802(0.3628) 0.4986(0.3865)
95% HD 4.4721(6.3911)⇑ 4.3344(6.0987) 4.6305(7.1305) 4.4721(6.3419) 4.4721(5.7482) 4.4721(6.5948) 5.0000(6.1716) 4.4721(6.1458)

ASSD 1.8416(1.9528)⇑ 1.8069(1.9257) 1.8933(1.9219) 1.8466(2.0230) 1.8874(2.0495) 1.7710(1.8766) 1.8792(1.9661) 1.8159(1.8382)↓

RF-Net

Accuracy 0.9939(0.0145)↑ 0.9946(0.0152) 0.9944(0.0145) 0.9941(0.0135) 0.9943(0.0150) 0.9946(0.0140) 0.9944(0.0142) 0.9944(0.0137)
Precision 0.9401(0.0519) 0.9341(0.0566)↓ 0.9376(0.0548)↓ 0.9384(0.0479)↓ 0.9365(0.0560) 0.9337(0.0471)↓ 0.9382(0.0516)↓ 0.9358(0.0500)↓

Recall 0.9514(0.0786)↑ 0.9550(0.0673)↑ 0.9527(0.0740)↑ 0.9520(0.0763) 0.9497(0.0764) 0.9534(0.0749)↑ 0.9540(0.0783)↑ 0.9568(0.0683)↑
Dice 0.9328(0.0484)↑ 0.9350(0.0545) 0.9331(0.0563) 0.9351(0.0484) 0.9341(0.0516)↓ 0.9337(0.0488) 0.9351(0.0501) 0.9363(0.0506)

Surface Dice 0.4819(0.3398) 0.4859(0.3493) 0.4698(0.3651) 0.4565(0.3683) 0.4658(0.3369) 0.4740(0.3419) 0.4676(0.3519) 0.4740(0.3472)
95% HD 4.1231(5.1716)⇑ 4.1231(5.2245) 4.1231(5.2338) 4.1231(4.9527) 4.1231(5.1716) 4.1231(5.1716) 4.1231(4.9818) 4.1948(4.4517)↑

ASSD 1.8193(2.0989)⇑ 1.7451(2.1847) 1.8651(2.0192) 1.8706(1.8288) 1.8262(2.2798) 1.7573(2.1133) 1.8038(2.2263) 1.8029(1.9126)

CDM

Accuracy 0.9937(0.0159) 0.9945(0.0152)↑ 0.9944(0.0141)↑ 0.9938(0.0163)↑ 0.9933(0.0154) 0.9935(0.0154)↑ 0.9936(0.0152) 0.9942(0.0160)↑
Precision 0.9368(0.0677) 0.9417(0.0521)↑ 0.9464(0.0644)↑ 0.9383(0.0673) 0.9405(0.0663) 0.9367(0.0666) 0.9418(0.0581)↑ 0.9425(0.0674)↑

Recall 0.9423(0.0867) 0.9443(0.0714) 0.9488(0.0736) 0.9526(0.0670)↑ 0.9478(0.0770) 0.9493(0.0736)↑ 0.9405(0.0769)↓ 0.9464(0.0791)
Dice 0.9287(0.0485) 0.9312(0.0480)↑ 0.9322(0.0471)↑ 0.9289(0.0512)↑ 0.9283(0.0502) 0.9289(0.0553) 0.9288(0.0511) 0.9239(0.0427)↑

Surface Dice 0.4750(0.3017) 0.4859(0.3281)↑ 0.4974(0.3060)↑ 0.4850(0.3408)↑ 0.4843(0.3158)↑ 0.4832(0.3486) 0.4802(0.3579) 0.5195(0.3380)↑
95% HD 4.4721(6.3804)⇈ 4.4721(6.0472) 4.3459(4.8102)↑ 4.2426(5.4853) 4.4721(5.9443) 4.4721(6.2195) 4.5513(7.0000) 4.4721(5.3207)

ASSD 1.9359(2.0769)⇈ 1.8478(2.0396)↑ 1.7737(1.7436)↑ 1.8203(2.1447)↑ 1.8506(2.0545) 1.9027(2.1788) 1.8933(1.7054) 1.7721(1.9154)↑
Average Rank in Friedman test 4.61 4.69 4.44 3.7 4.73 4.87 4.67 4.29

Meaning of paired test results

↑ statistically better based on Wilcoxon rank test ↓ statistically worse based on Wilcoxon rank test
⇈ statistically better based on t-test ⇊ statistically worse based on t-test
⇑ statistically better based on both tests ⇓ statistically worse based on both tests

more than 3 segmentation metrics
are evaluated as statistically better

more than 3 segmentation metrics
are evaluated as statistically worse

TABLE A2: Intra-dataset results of Dataset 2.
Friedman test’s p-value: 0.0074 (<0.05)

Nemenyi post hoc test: Figure A1 (a) Original Lee OBNLM DPAD PFDTV GLM DnCNN SARBM3D

U-Net

Accuracy 0.9946(0.0112) 0.9945(0.0121) 0.9948(0.0117) 0.9942(0.0128) 0.9945(0.0124) 0.9937(0.0116)↓ 0.9946(0.0128) 0.9945(0.0122)
Precision 0.9218(0.1127) 0.9224(0.1166) 0.9303(0.0917)↑ 0.9238(0.1212) 0.9276(0.1347) 0.9105(0.1294)↓ 0.9254(0.1116) 0.9203(0.1165)

Recall 0.9360(0.1059) 0.9264(0.1431)↓ 0.9264(0.1445)↓ 0.9262(0.1187)↓ 0.9322(0.1347) 0.9343(0.1338) 0.9310(0.1414)↓ 0.9335(0.1331)↓
Dice 0.9055(0.1070) 0.9060(0.1101) 0.9014(0.0951) 0.9061(0.1160) 0.9068(0.1201) 0.8941(0.1018)↓ 0.9031(0.1111) 0.9075(0.1204)

Surface Dice 0.5445(0.3671) 0.5303(0.4057) 0.5477(0.4005) 0.5475(0.3904) 0.5296(0.4028) 0.5349(0.3988)↓ 0.5424(0.4215) 0.5531(0.4193)
95% HD 5.2421(10.1716) 6.0414(14.0000) 6.0000(11.0000) 5.0000(12.6396)↓ 5.5906(15.8281) 6.6583(16.0000)↓ 5.6926(11.9364) 5.3852(12.1716)

ASSD 2.0036(3.3247) 2.2029(3.2317) 1.8793(2.9231) 2.0681(3.5395) 2.1126(4.1710) 2.2248(4.5042)↓ 1.9672(3.2125)↓ 2.0809(3.9532)

SK-UNet

Accuracy 0.9950(0.0106)↑ 0.9950(0.0096) 0.9953(0.0108) 0.9951(0.0092) 0.9953(0.0096) 0.9952(0.0097) 0.9951(0.0102)↑ 0.9952(0.0089)
Precision 0.9104(0.1130) 0.9292(0.1054) 0.9304(0.1027) 0.9430(0.0920)↑ 0.9305(0.1026) 0.9338(0.1066)↑ 0.9362(0.0910)↑ 0.9290(0.0983)↑

Recall 0.9315(0.1166) 0.9346(0.0974) 0.9380(0.1016) 0.9182(0.1168)⇓ 0.9393(0.1062) 0.9386(0.1109) 0.9359(0.1032) 0.9346(0.1121)↓
Dice 0.9081(0.0783) 0.9138(0.0710) 0.9151(0.0826) 0.9117(0.0747) 0.9082(0.0899) 0.9063(0.0901) 0.9194(0.0763)↑ 0.9092(0.0830)

Surface Dice 0.5263(0.3386) 0.5546(0.3583) 0.5524(0.3605)↑ 0.5474(0.3492)↑ 0.5304(0.3585) 0.5509(0.3338) 0.5696(0.3577)↑ 0.5446(0.3856)
95% HD 5.0000(8.4853) 5.0000(7.1716) 5.0000(7.4331) 4.7625(6.8715) 5.0000(9.2048) 5.0000(9.8457) 4.3238(7.1716) 5.0000(8.4835)

ASSD 1.8347(2.4190) 1.7817(2.1973) 1.7269(2.1510) 1.8579(2.1042)↑ 1.8190(2.5611) 1.7598(2.6614) 1.7086(2.3842)↑ 1.7909(2.4808)

CE-Net

Accuracy 0.9955(0.0094)⇑ 0.9954(0.0089) 0.9955(0.0092)↑ 0.9952(0.0087) 0.9955(0.0091) 0.9954(0.0086) 0.9954(0.0091) 0.9954(0.0087)
Precision 0.9372(0.1023)⇑ 0.9388(0.0967) 0.9384(0.0952) 0.9374(0.1009) 0.9395(0.0979)↑ 0.9413(0.0990)↑ 0.9380(0.0990)↑ 0.9354(0.1070)

Recall 0.9298(0.0873) 0.9308(0.0870) 0.9293(0.0901) 0.9293(0.0952) 0.9243(0.0959)↓ 0.9336(0.0964) 0.9263(0.0934)↓ 0.9325(0.0895)
Dice 0.9160(0.0794)⇑ 0.9171(0.0764) 0.9182(0.0798)↑ 0.9157(0.0754) 0.9155(0.0809) 0.9162(0.0743) 0.9177(0.0734) 0.9180(0.0779)

Surface Dice 0.5489(0.3166) 0.5401(0.3263)↑ 0.5478(0.3363)↑ 0.5350(0.3160) 0.5384(0.3329) 0.5355(0.3241) 0.5432(0.3450)↑ 0.5571(0.3191)
95% HD 4.2426(5.5732)↑ 4.2426(5.2315) 4.1231(5.4853) 4.3746(5.0000) 4.4721(5.4853) 4.4721(5.6918) 4.3517(5.6641) 4.4521(5.6023)

ASSD 1.7675(1.8781)⇑ 1.7164(1.8249) 1.7129(1.7796)↑ 1.7931(1.6265) 1.6878(1.7816) 1.7347(1.7077) 1.6874(1.5793) 1.7120(1.6974)

RF-Net

Accuracy 0.9955(0.0084)⇑ 0.9958(0.0092) 0.9956(0.0093) 0.9954(0.0092) 0.9955(0.0089) 0.9955(0.0087) 0.9957(0.0086) 0.9958(0.0093)↑
Precision 0.9426(0.0664)⇑ 0.9419(0.0704) 0.9407(0.0748) 0.9402(0.0760) 0.9440(0.0791) 0.9412(0.0727) 0.9437(0.0525) 0.9424(0.0773)

Recall 0.9252(0.1312)↓ 0.9288(0.1268) 0.9278(0.1235) 0.9187(0.1243) 0.9282(0.1220) 0.9305(0.1271) 0.9210(0.1317) 0.9298(0.1238)↑
Dice 0.9143(0.0796)⇑ 0.9158(0.0787) 0.9158(0.0782) 0.9129(0.0788) 0.9121(0.0859) 0.9167(0.0797) 0.9166(0.0800) 0.9150(0.0789)↑

Surface Dice 0.5670(0.3482) 0.5713(0.3629) 0.5928(0.3491) 0.5457(0.3513) 0.5554(0.3510) 0.5565(0.3216) 0.5868(0.3719) 0.5662(0.3461)
95% HD 4.2038(5.4178)⇑ 4.3021(5.2307) 4.1170(5.5015) 4.3771(5.1933) 4.1678(5.9419) 4.4721(5.9835) 4.4721(5.1716) 4.8021(5.9873)

ASSD 1.5996(1.9716)⇑ 1.6141(2.0126) 1.6236(1.9558) 1.7886(1.8426) 1.6122(1.9914) 1.6929(1.8686) 1.5975(1.6890) 1.5746(1.9407)

CDM

Accuracy 0.9958(0.0075)⇑ 0.9961(0.0080) 0.9957(0.0091) 0.9957(0.0090) 0.9960(0.0079) 0.9957(0.0075) 0.9959(0.0078) 0.9958(0.0088)
Precision 0.9382(0.0701)⇑ 0.9433(0.0763) 0.9440(0.0709) 0.9441(0.0705)↑ 0.9438(0.0728) 0.9421(0.0717) 0.9426(0.0685)↑ 0.9450(0.0701)

Recall 0.9365(0.0999) 0.9289(0.1060) 0.9351(0.0989) 0.9311(0.1068) 0.9358(0.1056) 0.9338(0.0920) 0.9310(0.1062)↓ 0.9316(0.0982)
Dice 0.9243(0.0685)⇑ 0.9205(0.0751) 0.9230(0.0766) 0.9235(0.0717) 0.9212(0.0758) 0.9246(0.0713) 0.9225(0.0681) 0.9214(0.0663)

Surface Dice 0.5955(0.3426)⇑ 0.5806(0.3462) 0.6056(0.3656) 0.5930(0.3699) 0.6056(0.3861) 0.5901(0.3568) 0.5961(0.3576) 0.5911(0.3302)
95% HD 4.1231(5.7639)⇑ 4.1231(5.7639) 4.1500(6.7471) 4.1231(5.7639) 4.1231(6.1598) 4.0954(6.2492) 4.0000(5.8262) 4.1231(5.9550)

ASSD 1.5538(1.6602)⇑ 1.5824(1.8679) 1.5092(2.0932) 1.5403(1.8678) 1.5560(1.7605) 1.5212(1.8151) 1.5109(1.8382) 1.5599(1.7591)
Average Rank in Friedman test 4.71 4.86 3.56 5.54 4.4 4.97 3.59 4.37

TABLE A3: Intra-dataset results of Dataset 3.
Friedman test’s p-value: 3.56e-9 (<0.05)

Nemenyi post hoc test: Figure A1 (b) Original Lee OBNLM DPAD PFDTV GLM DnCNN SARBM3D

U-Net

Accuracy 0.9888(0.0073) 0.9888(0.0077) 0.9886(0.0077)↓ 0.9888(0.0074)↑ 0.9888(0.0073) 0.9887(0.0076)↓ 0.9887(0.0073) 0.9885(0.0074)↓
Precision 0.9383(0.0843) 0.9410(0.0850)↑ 0.9335(0.0892)⇓ 0.9428(0.0825)⇑ 0.9393(0.0847)↑ 0.9363(0.0866)⇓ 0.9375(0.0876)↓ 0.9382(0.0885)↓

Recall 0.9518(0.0652) 0.9494(0.0646)↓ 0.9563(0.0605)⇑ 0.9478(0.0702)⇓ 0.9506(0.0647) 0.9519(0.0641)↑ 0.9532(0.0621)↑ 0.9505(0.0642)↓
Dice 0.9352(0.0408) 0.9348(0.0427)↓ 0.9347(0.0439)↓ 0.9354(0.0411) 0.9355(0.0412) 0.9345(0.0418)↓ 0.9349(0.0419) 0.9338(0.0429)↓

Surface Dice 0.7596(0.2477) 0.7589(0.2537)↓ 0.7508(0.2546)↓ 0.7608(0.2528)↑ 0.7613(0.2478) 0.7518(0.2581)↓ 0.7597(0.2505) 0.7463(0.2481)↓
95% HD 2.2361(1.0000) 2.2361(1.0000)↓ 2.2361(1.0000)↓ 2.2361(1.0000)↑ 2.2361(1.0000) 2.2361(1.0000)↓ 2.2361(1.0000)↓ 2.2361(1.0000)↓

ASSD 0.9942(0.5414) 0.9981(0.5625) 1.0171(0.5805)↓ 0.9931(0.5516)↑ 0.9864(0.5418)↑ 1.0047(0.5756)↓ 1.0015(0.5618) 1.0232(0.5505)↓

DAEFF-Net

Accuracy 0.9881(0.0073)⇓ 0.9880(0.0075)↓ 0.9879(0.0075)↓ 0.9882(0.0075)↑ 0.9881(0.0074) 0.9882(0.0077)↓ 0.9881(0.0074) 0.9880(0.0073)↓
Precision 0.9395(0.0860) 0.9400(0.0890) 0.9349(0.0907)↓ 0.9375(0.0884)↓ 0.9418(0.0868)↑ 0.9370(0.0869)↓ 0.9426(0.0869)↑ 0.9392(0.0839)

Recall 0.9418(0.0705)⇓ 0.9419(0.0703)↓ 0.9437(0.0721) 0.9443(0.0681)⇑ 0.9409(0.0738)↓ 0.9422(0.0715) 0.9392(0.0729)⇓ 0.9405(0.0743)↓
Dice 0.9301(0.0426)⇓ 0.9300(0.0417)↓ 0.9283(0.0426)↓ 0.9308(0.0420)↑ 0.9296(0.0433) 0.9294(0.0434)↓ 0.9301(0.0423)↓ 0.9297(0.0409)↓

Surface Dice 0.7229(0.2475)⇓ 0.7247(0.2474)↓ 0.7178(0.2462)⇓ 0.7296(0.2490)↑ 0.7197(0.2419) 0.7192(0.2451)↓ 0.7285(0.2438)↓ 0.7205(0.2441)↓
95% HD 2.2361(1.1623)⇓ 2.5471(1.1623)↓ 2.8284(1.1623)↓ 2.2361(1.1379)↑ 2.3249(1.1460)↓ 2.3545(1.1623)↓ 2.5915(1.1289)↓ 2.5767(1.1623)↓

ASSD 1.0701(0.5410)⇓ 1.0753(0.5556)↓ 1.0926(0.5643)⇓ 1.0640(0.5544)↑ 1.0794(0.5560) 1.0777(0.5515)↓ 1.0657(0.5468) 1.0757(0.5476)↓

RF-Net

Accuracy 0.9884(0.0074)↓ 0.9886(0.0073)↑ 0.9885(0.0073) 0.9885(0.0073)↑ 0.9885(0.0073) 0.9884(0.0074)↓ 0.9885(0.0073)↑ 0.9885(0.0072)
Precision 0.9399(0.0848) 0.9380(0.0859)↓ 0.9358(0.0896)⇓ 0.9391(0.0862)↓ 0.9378(0.0881)↓ 0.9369(0.0896)↓ 0.9381(0.0867)↓ 0.9391(0.0892)↓

Recall 0.9456(0.0653)⇓ 0.9497(0.0649)⇑ 0.9516(0.0635)⇑ 0.9470(0.0648)↑ 0.9484(0.0641)↑ 0.9484(0.0654)↑ 0.9489(0.0638)⇑ 0.9481(0.0655)↑
Dice 0.9327(0.0416)⇓ 0.9340(0.0420)↑ 0.9339(0.0422)↑ 0.9334(0.0418)↑ 0.9332(0.0419) 0.9330(0.0427)↓ 0.9336(0.0412)↑ 0.9334(0.0428)

Surface Dice 0.6894(0.2497)⇓ 0.6883(0.2508)↑ 0.6894(0.2493)↑ 0.6923(0.2490)↑ 0.6901(0.2508) 0.6828(0.2497)↓ 0.6915(0.2541)↑ 0.6838(0.2513)
95% HD 3.0000(1.6056)⇓ 2.9828(1.6056) 3.0000(1.6832) 3.0000(1.6056)↑ 3.0000(1.6056) 3.0000(1.8028)↓ 3.0000(1.6056)↑ 3.0000(1.6056)

ASSD 1.1585(0.6224)⇓ 1.1593(0.6266)↑ 1.1628(0.6204) 1.1598(0.6103)↑ 1.1627(0.6061) 1.1799(0.6261)↓ 1.1596(0.6159)↑ 1.1659(0.6170)↓

CDM

Accuracy 0.9881(0.0079)⇓ 0.9882(0.0080) 0.9880(0.0081)↓ 0.9881(0.0080) 0.9880(0.0081) 0.9880(0.0082) 0.9883(0.0081)↑ 0.9880(0.0079)↓
Precision 0.9323(0.0931)⇓ 0.9304(0.0957) 0.9333(0.0960)↑ 0.9311(0.0946) 0.9335(0.0926)↑ 0.9356(0.0927)⇑ 0.9370(0.0920)⇑ 0.9315(0.0943)↑

Recall 0.9546(0.0635)⇑ 0.9556(0.0638) 0.9522(0.0673)⇓ 0.9551(0.0634)↓ 0.9531(0.0663)⇓ 0.9503(0.0695)⇓ 0.9520(0.0684)⇓ 0.9535(0.0668)↓
Dice 0.9319(0.0442)⇓ 0.9322(0.0441) 0.9311(0.0462)↓ 0.9318(0.0438) 0.9321(0.0444) 0.9318(0.0447)↓ 0.9318(0.0444)↑ 0.9313(0.0444)↓

Surface Dice 0.7340(0.2615)⇓ 0.7306(0.2660) 0.7276(0.2672)↓ 0.7328(0.2715) 0.7311(0.2680) 0.7276(0.2770)↓ 0.7332(0.2703)↑ 0.7223(0.2565)↓
95% HD 2.3397(1.1623)⇓ 2.2361(1.1623) 2.7692(1.1623)↓ 2.2361(1.1623) 2.3545(1.1623) 2.5915(1.1623) 2.2361(1.1623) 2.3545(1.1623)↓

ASSD 1.0548(0.5894)⇓ 1.0538(0.6126) 1.0597(0.6043)↓ 1.0553(0.5961) 1.0586(0.6124) 1.0687(0.6258)↓ 1.0552(0.6008)↑ 1.0810(0.5808)↓
Average Rank in Friedman test 3.7 3.54 5.84 3.2 4.18 5.91 3.55 6.09

TABLE A4: Intra-dataset results of Dataset 4.
Friedman test’s p-value: 0.1125 (>0.05)

Nemenyi post hoc test: None Original Lee OBNLM DPAD PFDTV GLM DnCNN SARBM3D

U-Net

Accuracy 0.9900(0.0085) 0.9900(0.0089) 0.9899(0.0082) 0.9898(0.0082) 0.9895(0.0078) 0.9893(0.0079) 0.9892(0.0090) 0.9895(0.0093)
Precision 0.9509(0.0654) 0.9456(0.0732)↓ 0.9482(0.0673) 0.9455(0.0666)↓ 0.9471(0.0641)↓ 0.9385(0.0705)↓ 0.9478(0.0637) 0.9397(0.0762)⇓

Recall 0.9484(0.0607) 0.9569(0.0607)↑ 0.9497(0.0702) 0.9560(0.0616)↑ 0.9539(0.0631)↑ 0.9588(0.0613)⇑ 0.9473(0.0674) 0.9598(0.0621)⇑
Dice 0.9405(0.0457) 0.9413(0.0465) 0.9393(0.0456) 0.9405(0.0439) 0.9403(0.0442) 0.9408(0.0400) 0.9396(0.0471)↓ 0.9413(0.0456)

Surface Dice 0.2515(0.1865) 0.2559(0.1741) 0.2619(0.1628) 0.2527(0.1706) 0.2600(0.1557) 0.2540(0.1609) 0.2531(0.1713) 0.2523(0.1713)↓
95% HD 12.0509(9.5724) 11.7047(9.9942) 12.0768(8.9408) 12.0000(9.0000) 11.3137(8.9657) 12.0000(9.4838) 12.1448(10.3295)↓ 12.0343(10.0000)

ASSD 4.4112(3.2255) 4.4000(3.2529) 4.3935(3.3574) 4.3133(3.0710) 4.2232(2.8446) 4.3561(3.0858) 4.5249(3.0048) 4.2682(3.4345)

DAEFF-Net

Accuracy 0.9902(0.0068)⇑ 0.9906(0.0071)↑ 0.9905(0.0070)↑ 0.9906(0.0066)↑ 0.9903(0.0070) 0.9908(0.0071)↑ 0.9902(0.0067)↑ 0.9902(0.0066)↑
Precision 0.9407(0.0639)↓ 0.9422(0.0634)↑ 0.9496(0.0613)↑ 0.9444(0.0624)↑ 0.9419(0.0653)↑ 0.9479(0.0592)↑ 0.9430(0.0613)↑ 0.9418(0.0637)↑

Recall 0.9634(0.0591)⇑ 0.9622(0.0612) 0.9569(0.0641)↓ 0.9599(0.0585)↓ 0.9632(0.0581) 0.9593(0.0613)↓ 0.9615(0.0577)↓ 0.9616(0.0591)↓
Dice 0.9443(0.0380)↑ 0.9452(0.0360)↑ 0.9448(0.0358)↑ 0.9448(0.0366)↑ 0.9440(0.0369) 0.9461(0.0379)↑ 0.9444(0.0371) 0.9445(0.0379)↑

Surface Dice 0.2443(0.1710) 0.2487(0.1710)↑ 0.2615(0.1949)↑ 0.2470(0.1634) 0.2445(0.1737) 0.2527(0.1758)↑ 0.2422(0.1642) 0.2491(0.1658)↑
95% HD 10.7248(6.9326)⇑ 10.1980(7.0594) 10.0000(6.6483)↑ 10.4367(6.8869)↑ 10.3429(6.5969) 10.2322(6.3126)↑ 10.7213(6.8620) 10.2786(6.9326)

ASSD 4.0606(2.3440)⇑ 3.9382(2.3177)↑ 3.9909(2.3905)↑ 4.0229(2.3460)↑ 3.9711(2.4471) 3.9653(2.3773)↑ 4.1141(2.2910) 4.0056(2.2235)↑

RF-Net

Accuracy 0.9913(0.0066)⇑ 0.9913(0.0069) 0.9912(0.0068) 0.9912(0.0068) 0.9910(0.0067) 0.9912(0.0068) 0.9912(0.0070) 0.9913(0.0067)
Precision 0.9610(0.0492)⇑ 0.9587(0.0518)↓ 0.9608(0.0530)↓ 0.9594(0.0520)↓ 0.9604(0.0494) 0.9604(0.0510)↓ 0.9604(0.0502)↓ 0.9612(0.0480)

Recall 0.9529(0.0619) 0.9563(0.0572)↑ 0.9522(0.0627)↑ 0.9552(0.0624)↑ 0.9530(0.0589) 0.9564(0.0584)↑ 0.9550(0.0631)↑ 0.9532(0.0588)
Dice 0.9494(0.0399)⇑ 0.9500(0.0382) 0.9509(0.0380) 0.9489(0.0397) 0.9487(0.0383) 0.9492(0.0379) 0.9491(0.0410) 0.9498(0.0385)

Surface Dice 0.2805(0.1902)⇑ 0.2837(0.1761) 0.2952(0.1877) 0.2895(0.1903) 0.2829(0.1903) 0.2827(0.1916) 0.2839(0.1960) 0.2860(0.1817)
95% HD 9.2195(7.0684)⇑ 9.4340(6.3052)↓ 9.4406(6.3302) 9.2195(6.6583) 9.0083(6.6335) 9.0554(6.9482) 9.2195(6.7454) 9.2195(6.2918)

ASSD 3.6643(2.2706)⇑ 3.6293(2.3669) 3.6747(2.2474) 3.6597(2.3581) 3.6561(2.4914) 3.5286(2.3864) 3.6063(2.3890) 3.6272(2.4191)

CDM

Accuracy 0.9901(0.0071)⇑ 0.9904(0.0073)↓ 0.9900(0.0074)↓ 0.9905(0.0073) 0.9900(0.0075)↓ 0.9905(0.0075) 0.9903(0.0073)↑ 0.9902(0.0071)
Precision 0.9548(0.0618)↑ 0.9576(0.0603)↑ 0.9555(0.0631) 0.9550(0.0635) 0.9547(0.0669)↓ 0.9547(0.0610)↑ 0.9556(0.0595)↑ 0.9539(0.0629)

Recall 0.9552(0.0612)↑ 0.9513(0.0628)↓ 0.9510(0.0637)↓ 0.9549(0.0614)↓ 0.9548(0.0596) 0.9503(0.0627)↓ 0.9527(0.0622)↓ 0.9529(0.0631)↓
Dice 0.9432(0.0376)↑ 0.9432(0.0374)↓ 0.9423(0.0429)↓ 0.9432(0.0373) 0.9429(0.0394)↓ 0.9443(0.0390) 0.9440(0.0372) 0.9421(0.0380)↓

Surface Dice 0.2686(0.1656) 0.2631(0.1712)↓ 0.2657(0.1680) 0.2667(0.1708) 0.2615(0.1846)↓ 0.2715(0.1815) 0.2714(0.1669) 0.2703(0.1732)
95% HD 10.7935(7.4847)⇑ 10.7808(6.9546)↓ 11.0000(6.8661) 10.8641(7.2503)↓ 10.8039(7.3842)↓ 10.7703(7.4892) 10.6372(7.3353) 11.0000(7.0805)

ASSD 4.0099(2.4478)⇑ 4.0878(2.5454)↓ 4.0841(2.7613)↓ 3.9511(2.4977) 4.0693(2.5740)↓ 3.9561(2.6083) 3.9237(2.4946) 4.0685(2.4991)
Average Rank in Friedman test 5.09 3.71 4.84 4.36 4.96 3.52 4.95 4.57

TABLE A5: Intra-dataset results on Dataset 3 based on semi-
supervised U-Net.

Friedman test’s p-value: 0.0045 (<0.05)
Nemenyi post hoc test: Figure A1 (d) Original Lee OBNLM DPAD PFDTV GLM DnCNN SARBM3D

U-Net

Accuracy 0.9864(0.0096)⇓ 0.9863(0.0092)↑ 0.9860(0.0100)↓ 0.9862(0.0092)↑ 0.9864(0.0092)⇑ 0.9859(0.0096)↓ 0.9863(0.0092)↑ 0.9860(0.0097)↓
Precision 0.9286(0.1075)⇓ 0.9312(0.1066)↑ 0.9200(0.1190)⇓ 0.9284(0.1070)↓ 0.9314(0.1040)⇑ 0.9236(0.1117)↓ 0.9323(0.1052)↑ 0.9297(0.1116)↑

Recall 0.9379(0.0774)⇓ 0.9360(0.0795)↓ 0.9434(0.0737)⇑ 0.9404(0.0760)↑ 0.9345(0.0775)↓ 0.9397(0.0764)↑ 0.9380(0.0781)↓ 0.9343(0.0799)↓
Dice 0.9205(0.0526)⇓ 0.9203(0.0523)↑ 0.9192(0.0538)↓ 0.9213(0.0523)↑ 0.9217(0.0519)↑ 0.9194(0.0532)↓ 0.9211(0.0533)↑ 0.9183(0.0524)↓

Surface Dice 0.6663(0.2669)⇓ 0.6711(0.2565) 0.6581(0.2582)↓ 0.6689(0.2603) 0.6752(0.2611)↑ 0.6539(0.2610)↓ 0.6716(0.2603)↑ 0.6563(0.2636)↓
95% HD 3.0000(1.8378)⇓ 3.0000(1.7757)⇑ 3.0000(1.8870)↓ 3.0000(1.7757)⇑ 3.0000(1.8348)⇑ 3.0000(1.8870) 3.0000(1.9646)⇑ 3.0000(1.8870)

ASSD 1.2279(0.7301)⇓ 1.2164(0.7119)↑ 1.2556(0.7387)↓ 1.2272(0.6958)↑ 1.2148(0.6992)⇑ 1.2552(0.7349)⇓ 1.2237(0.7331)↑ 1.2601(0.7257)↓
Average Rank in Friedman test 4.29 3.86 5.71 3.93 2.57 6.07 3.00 6.57

TABLE A6: Cross-dataset results: Testing Dataset 2 with
models trained based on Dataset 1.

Friedman test’s p-value: 0.0125 (<0.05)
Nemenyi post hoc test: None Original Lee OBNLM DPAD PFDTV GLM DnCNN SARBM3D

U-Net

Accuracy 0.9919(0.0164) 0.9887(0.0295)↓ 0.9902(0.0260) 0.9889(0.0260)⇓ 0.9877(0.0215)↓ 0.9903(0.0288)↓ 0.9921(0.0201) 0.9906(0.0232)↓
Precision 0.8953(0.2081) 0.8383(0.5739)⇓ 0.8612(0.7787)⇓ 0.8492(0.6322)⇓ 0.8350(0.5380)⇓ 0.8948(0.3085) 0.8863(0.2827) 0.8616(0.3618)↓

Recall 0.9300(0.3071) 0.9340(0.6046) 0.9058(0.8405)⇓ 0.9340(0.5355) 0.9305(0.6431) 0.9205(0.4048) 0.9202(0.5195) 0.9438(0.2842)↑
Dice 0.8781(0.3334) 0.8367(0.5894)⇓ 0.8532(0.7952)⇓ 0.8306(0.6132)⇓ 0.8357(0.5813)⇓ 0.8645(0.3934) 0.8798(0.3905) 0.8708(0.3508)

Surface Dice 0.4092(0.4038) 0.3459(0.4581)↓ 0.3534(0.5753) 0.3354(0.4768)↓ 0.3028(0.4176)⇓ 0.4343(0.4287) 0.4134(0.4566) 0.3898(0.4444)
95% HD 8.1542(36.1889) 21.9274(91.6727)⇓ 19.0062(101.2590)⇓ 20.3668(92.6413)↓ 21.9640(95.0575)⇓ 15.3699(56.3242) 10.9286(63.1256) 18.6845(72.4160)↓

ASSD 2.9102(8.7587) 6.8694(27.7742)↓ 5.1267(27.9416)⇓ 6.1374(27.9020)↓ 6.0776(26.8425)↓ 4.6420(14.5768) 3.7094(17.7443) 4.8930(17.5198)↓

SK-UNet

Accuracy 0.9847(0.0459)⇓ 0.9906(0.0340)⇑ 0.9903(0.0268)⇑ 0.9881(0.0275)↑ 0.9873(0.0277)⇑ 0.9901(0.0282)⇑ 0.9846(0.0410) 0.9872(0.0346)⇑
Precision 0.7618(0.6305)⇓ 0.8475(0.4403)↑ 0.8806(0.4088)↑ 0.8392(0.4664)↑ 0.8895(0.3961)⇑ 0.8689(0.3692)⇑ 0.7904(0.5557) 0.8135(0.3623)

Recall 0.9136(0.3597)↓ 0.9509(0.1485)⇑ 0.9129(0.8198) 0.9444(0.1444)⇑ 0.9248(0.3608) 0.9299(0.2328)↑ 0.9579(0.1455)⇑ 0.9723(0.0992)⇑
Dice 0.8229(0.5301)⇓ 0.8734(0.3663)⇑ 0.8684(0.6686)↑ 0.8806(0.3697)⇑ 0.8669(0.3195)↑ 0.8786(0.3471)↑ 0.8367(0.4283)↑ 0.8709(0.2564)⇑

Surface Dice 0.2927(0.4563)⇓ 0.4073(0.4473)↑ 0.3824(0.4995) 0.3969(0.3985)↑ 0.3931(0.4560)↑ 0.3832(0.4910)↑ 0.3199(0.4463) 0.3496(0.4017)
95% HD 23.7118(73.5096)↓ 14.5935(40.4249)↑ 12.8344(53.3140)↑ 12.7264(59.5787)⇑ 11.0306(48.4866)⇑ 10.2298(37.7360)↑ 21.3763(67.9713)↑ 14.1954(44.4451)⇑

ASSD 7.0793(20.1621)↓ 3.1737(10.8535)↑ 3.3175(14.2915)⇊ 3.4352(13.4414)⇑ 3.9219(12.6274)⇑ 3.4865(11.5350)↑ 5.3488(17.6380)↑ 3.6769(9.7985)⇑

CE-Net

Accuracy 0.9927(0.0164)↑ 0.9934(0.0124)↑ 0.9927(0.0154) 0.9926(0.0184)↓ 0.9930(0.0160) 0.9927(0.0157) 0.9931(0.0165) 0.9926(0.0149)↑
Precision 0.8799(0.1858) 0.8888(0.1528)↑ 0.8779(0.1769) 0.8770(0.2105)↓ 0.8825(0.1742) 0.8748(0.1987)↓ 0.8648(0.1927)↓ 0.8833(0.1848)

Recall 0.9511(0.1506)⇑ 0.9436(0.1370) 0.9471(0.1441) 0.9566(0.1456)↑ 0.9512(0.1420) 0.9557(0.1275)↑ 0.9569(0.1144)↑ 0.9489(0.1368)
Dice 0.8900(0.1707)⇑ 0.8981(0.1194)↑ 0.8954(0.1437) 0.8812(0.1653)↓ 0.8900(0.1673) 0.8923(0.1588) 0.8910(0.1653) 0.8909(0.1672)

Surface Dice 0.4362(0.3696) 0.4253(0.3487)↑ 0.4301(0.3762) 0.4178(0.3488)↓ 0.4165(0.3506) 0.4148(0.3566)↓ 0.4140(0.3703)↓ 0.4274(0.3526)
95% HD 6.9403(16.5748)⇑ 5.5957(14.5325)↑ 5.6593(15.3857) 7.0711(17.0100) 6.8541(16.2731) 6.7190(16.4539) 7.0094(16.9966) 6.5290(15.5152)

ASSD 2.2668(3.8508)⇑ 2.1745(3.1724)↑ 2.2110(3.6123) 2.2668(4.3460)↓ 2.2753(3.9700) 2.3742(4.9090)↓ 2.3572(3.9633) 2.4591(3.4904)

RF-Net

Accuracy 0.9934(0.0141)↑ 0.9934(0.0154) 0.9933(0.0148) 0.9925(0.0159)⇓ 0.9934(0.0127)↑ 0.9932(0.0154) 0.9933(0.0147) 0.9933(0.0146)
Precision 0.9047(0.1263)⇈ 0.8963(0.1437)↓ 0.8929(0.1569) 0.8757(0.1744)⇓ 0.9095(0.1225)↑ 0.8910(0.1263)↓ 0.8965(0.1320)↓ 0.9024(0.1212)

Recall 0.9347(0.1601)⇑ 0.9398(0.1389)↑ 0.9288(0.1630) 0.9382(0.1600)↑ 0.9283(0.1729)↓ 0.9438(0.1402)↑ 0.9316(0.1676) 0.9314(0.1572)
Dice 0.8873(0.1259)⇑ 0.8935(0.1240) 0.8881(0.1618) 0.8808(0.1587)↓ 0.8954(0.1405) 0.8932(0.1244) 0.8849(0.1267) 0.8939(0.1474)

Surface Dice 0.4085(0.3319) 0.4057(0.3174) 0.4137(0.3666) 0.3880(0.3765)↓ 0.4064(0.3598) 0.4164(0.3015) 0.4159(0.3124) 0.4146(0.3626)↑
95% HD 5.8774(11.0004)⇑ 5.4735(10.7958) 5.5858(12.7193) 6.0207(16.6225)↓ 5.8310(11.1830) 5.5210(10.9275) 5.6917(12.3941) 5.8310(12.9622)

ASSD 2.3203(2.6951)⇑ 2.3103(3.0901) 2.2591(3.0273) 2.4291(4.3496)↓ 2.2290(3.1126) 2.2236(2.6997) 2.2506(2.7518) 2.2453(2.9089)

CDM

Accuracy 0.9929(0.0157)↑ 0.9936(0.0159)↑ 0.9939(0.0125)↑ 0.9927(0.0157)↓ 0.9934(0.0165)↑ 0.9928(0.0163) 0.9928(0.0158)↑ 0.9936(0.0156)↑
Precision 0.8946(0.1710) 0.9014(0.1685)↑ 0.9048(0.1325)↑ 0.8775(0.1779)↓ 0.9036(0.1531) 0.8993(0.1676)↓ 0.9046(0.1771)↑ 0.9001(0.1547)↑

Recall 0.9473(0.1182)⇑ 0.9520(0.0910)↑ 0.9441(0.1322) 0.9548(0.1135)↑ 0.9547(0.1194)↑ 0.9520(0.1213)↑ 0.9449(0.1002) 0.9506(0.1046)
Dice 0.8998(0.1346)⇑ 0.9064(0.1186)↑ 0.9024(0.1041)↑ 0.8888(0.1267) 0.8969(0.1302)↑ 0.8955(0.1251) 0.9064(0.1350)↑ 0.9057(0.1226)↑

Surface Dice 0.4367(0.3311)⇑ 0.4795(0.3536)↑ 0.4600(0.3623)↑ 0.4522(0.3675) 0.4621(0.3643)↑ 0.4286(0.3804) 0.4463(0.3586)↑ 0.4580(0.3517)↑
95% HD 5.8198(17.1260)⇑ 5.0990(14.8549) 5.4852(12.9537) 6.1119(14.0294)↓ 5.6569(14.9331)↑ 6.1502(15.4511) 5.8310(15.8263)↑ 5.4727(12.0432)

ASSD 2.1635(3.9063)⇑ 2.0476(3.1947)↑ 2.0756(2.8850)↑ 2.3751(3.4440) 2.0453(3.2357)↑ 2.2531(3.2407) 2.1572(3.6133)↑ 2.0799(2.8681)↑
Average Rank in Friedman test 5.0 3.49 4.26 5.71 4.47 4.31 4.69 4.07

TABLE A7: Cross-dataset results: Testing external breast
ultrasound dataset with models trained based on Dataset 1.

Friedman test’s p-value: 0.0013 (<0.05)
Nemenyi post hoc test: None Original Lee OBNLM DPAD PFDTV GLM DnCNN SARBM3D

U-Net

Accuracy 0.9615(0.0374) 0.9507(0.0491)↓ 0.9616(0.0484) 0.9665(0.0362) 0.9625(0.0444)↑ 0.9633(0.0486) 0.9660(0.0356) 0.9542(0.0465)↓
Precision 0.7674(0.2872) 0.7604(0.3053)↓ 0.7698(0.2790) 0.8158(0.2302)↑ 0.8109(0.2346)↑ 0.7642(0.2344) 0.7877(0.2592)↑ 0.7517(0.2613)↓

Recall 0.9849(0.0618) 0.9914(0.0636) 0.9916(0.0470) 0.9757(0.1577)⇓ 0.9798(0.0721)↓ 0.9891(0.0456) 0.9934(0.0556) 0.9871(0.0576)
Dice 0.8466(0.1606) 0.8393(0.2038)↓ 0.8579(0.1578) 0.8012(0.1356) 0.8431(0.1430)↑ 0.8514(0.1293) 0.8700(0.1676)↑ 0.8168(0.1746)

Surface Dice 0.1602(0.1652) 0.1616(0.1780) 0.1472(0.2020) 0.1760(0.1421)↑ 0.2020(0.1625)↑ 0.1900(0.2082)↑ 0.1854(0.1950)↑ 0.1471(0.1704)
95% HD 18.4064(18.0403) 23.2852(22.8440)↓ 18.9366(26.9758) 20.8313(22.5106) 19.2899(16.4116) 19.1779(15.2875) 17.6932(18.3458)↑ 21.4848(27.8117)

ASSD 6.6023(5.3133) 7.5641(6.9803)↓ 6.5523(7.8209) 7.1641(5.6306) 6.4428(4.4809)↑ 6.6666(6.1735) 5.5463(4.6000)↑ 7.1718(6.0039)

SK-UNet

Accuracy 0.9426(0.0558)⇓ 0.9599(0.0424)⇑ 0.9510(0.0570) 0.9514(0.0561) 0.9630(0.0553)↑ 0.9399(0.0818) 0.9261(0.0962)↓ 0.9482(0.0475)
Precision 0.7046(0.2285)⇓ 0.8025(0.2089)⇑ 0.7059(0.2770) 0.7193(0.2531) 0.7522(0.2457)↑ 0.6474(0.3474)↓ 0.6101(0.2730)⇓ 0.7238(0.2230)

Recall 0.9838(0.0615) 0.9878(0.0408) 0.9919(0.0385) 0.9968(0.0290)↑ 0.9908(0.0622) 0.9989(0.0318)↑ 0.9985(0.0256)↑ 0.9949(0.0267)↑
Dice 0.7904(0.1251)⇓ 0.8631(0.1494)⇑ 0.8178(0.1947) 0.7982(0.1605) 0.8272(0.1628)↑ 0.7652(0.2198) 0.7375(0.1886)↓ 0.8196(0.1399)

Surface Dice 0.1307(0.1479) 0.1931(0.2755)⇑ 0.1364(0.1836) 0.1316(0.1558) 0.1657(0.1883)↑ 0.0842(0.1477)↓ 0.0557(0.1288)⇓ 0.1215(0.1811)
95% HD 29.4109(46.0603)⇓ 19.2263(15.9711)⇑ 26.9258(38.8269) 22.0747(27.4820)↑ 18.9737(26.3519)⇑ 31.1127(37.6172) 32.9757(46.6220) 23.0000(20.7480)⇈

ASSD 10.0955(11.1562)⇓ 5.7335(6.4584)⇑ 9.0414(10.2388) 8.9256(8.9185) 6.4123(7.6031)↑ 11.3548(14.7191) 12.1153(13.2784)↓ 7.7658(7.0925)

CE-Net

Accuracy 0.9735(0.0289)⇑ 0.9751(0.0262)↑ 0.9725(0.0349)↓ 0.9749(0.0339)↓ 0.9720(0.0281)↓ 0.9734(0.0310)↓ 0.9723(0.0284) 0.9760(0.0265)↑
Precision 0.8330(0.1442)⇑ 0.8398(0.1367)↑ 0.8275(0.1591)↓ 0.8233(0.1625)↓ 0.8323(0.1622)↓ 0.8207(0.1482)↓ 0.8380(0.1452)↓ 0.8198(0.1522)↑

Recall 0.9884(0.0432) 0.9815(0.0498) 0.9923(0.0378)↑ 0.9916(0.0353)↑ 0.9876(0.0444) 0.9924(0.0373)↑ 0.9891(0.0419)↑ 0.9847(0.0366)
Dice 0.8773(0.0748)⇑ 0.8881(0.0879)↑ 0.8728(0.0996)↓ 0.8810(0.0845)↓ 0.8785(0.0864)↓ 0.8715(0.0889)↓ 0.8806(0.0823)↓ 0.8929(0.0727)↑

Surface Dice 0.2260(0.2291)⇑ 0.2173(0.2205) 0.2283(0.2094)↓ 0.2097(0.1844)↓ 0.2062(0.2154)↓ 0.2089(0.2065)↓ 0.1964(0.2086)↓ 0.2302(0.2270)↑
95% HD 12.5932(9.9440)⇑ 12.0000(12.8818) 13.0384(10.9594)↓ 11.2270(10.2804)↓ 11.6619(9.3848) 12.0416(10.3048) 12.3693(10.3576) 11.1263(10.1154)↑

ASSD 4.8422(3.5373)⇑ 4.3270(3.5056)↑ 4.8826(4.3406)↓ 4.3754(4.1543)↓ 4.9417(3.6959) 4.9932(4.0975)↓ 4.8348(3.5436)↓ 4.2636(3.5479)↑

RF-Net

Accuracy 0.9647(0.0321)↑ 0.9707(0.0265)↑ 0.9645(0.0352) 0.9619(0.0383)↓ 0.9646(0.0341) 0.9618(0.0330) 0.9662(0.0325)↑ 0.9700(0.0313)↑
Precision 0.8089(0.2213)↑ 0.8380(0.1567)↑ 0.8095(0.1909)↓ 0.7939(0.2140)↓ 0.8051(0.2091) 0.7999(0.1966) 0.8120(0.2069)↑ 0.8291(0.1556)↑

Recall 0.9928(0.0377)↑ 0.9907(0.0500)↓ 0.9965(0.0346) 0.9932(0.0302)↑ 0.9935(0.0370) 0.9935(0.0344) 0.9935(0.0470) 0.9917(0.0350)↓
Dice 0.8795(0.1282)↑ 0.8883(0.1042)↑ 0.8693(0.1292) 0.8704(0.1313)↓ 0.8713(0.1397) 0.8652(0.1218) 0.8780(0.1230) 0.8819(0.1173)↑

Surface Dice 0.1646(0.2011) 0.1957(0.1863)↑ 0.1700(0.1966) 0.1487(0.2053)↓ 0.1782(0.1876) 0.1297(0.1894)↓ 0.1638(0.1997) 0.2256(0.2317)↑
95% HD 15.2315(12.2571)⇑ 14.5360(10.2354)↑ 15.5563(11.2387) 16.0000(12.6089)↓ 15.9057(13.0007) 15.5900(11.3907) 15.1278(11.1495) 13.8924(10.7106)↑

ASSD 5.5681(4.8700)⇑ 5.1171(3.4676)↑ 5.2141(4.5765) 5.8414(5.0161)↓ 5.2353(5.6552) 5.5365(4.7763) 5.2484(4.6431)↑ 4.6811(4.1312)↑

CDM

Accuracy 0.9722(0.0384)↑ 0.9752(0.0246)↑ 0.9733(0.0260) 0.9740(0.0328) 0.9733(0.0311) 0.9714(0.0291)↓ 0.9734(0.0306) 0.9744(0.0286)↑
Precision 0.8426(0.1738)↑ 0.8652(0.1438)↑ 0.8362(0.1842) 0.8276(0.1838)↓ 0.8259(0.1893)↓ 0.7873(0.1918)↓ 0.8418(0.1772)↑ 0.8489(0.1895)↑

Recall 0.9908(0.0568) 0.9875(0.0523)↓ 0.9933(0.0465) 0.9902(0.0356)↑ 0.9935(0.0395)↑ 0.9916(0.0520)↑ 0.9884(0.0509) 0.9863(0.0469)
Dice 0.8850(0.1068)↑ 0.8850(0.1006)↑ 0.8851(0.1080) 0.8660(0.1175)↓ 0.8771(0.1090) 0.8716(0.1205)↓ 0.8822(0.1161) 0.8803(0.1129)↑

Surface Dice 0.2275(0.2455)↑ 0.2341(0.2523)↑ 0.2196(0.2627) 0.2054(0.2346) 0.1979(0.2328)↓ 0.1684(0.2315)↓ 0.2263(0.2571) 0.2409(0.2655)↑
95% HD 13.5737(13.4846)↑ 13.0384(9.9655)↑ 14.3020(12.8487) 13.4349(13.8080)↓ 13.6742(12.8884) 14.0353(13.4464) 13.0000(13.1333) 13.2473(14.2984)

ASSD 5.0878(4.1475)↑ 4.3303(3.8674)↑ 4.8551(4.1358) 5.1491(4.6256)↓ 4.9391(4.7014) 5.2948(4.5071)↓ 5.0443(3.9229)↑ 4.6537(4.4382)
Average Rank in Friedman test 4.94 3.34 4.37 4.94 4.29 5.87 4.36 3.89

TABLE A8: Cross-dataset results: Testing Dataset 1 with
models trained based on Dataset 2.

Friedman test’s p-value: 0.0001 (<0.05)
Nemenyi post hoc test: Figure A2 (a) Original Lee OBNLM DPAD PFDTV GLM DnCNN SARBM3D

U-Net

Accuracy 0.9723(0.0720) 0.9717(0.0780)↓ 0.9719(0.0758)↓ 0.9686(0.0747)↓ 0.9692(0.0769)↓ 0.9699(0.0758)↓ 0.9718(0.0789)↓ 0.9705(0.0750)↓
Precision 0.9331(0.4997) 0.9284(0.6306) 0.9316(0.7583)↑ 0.9275(0.5715) 0.9213(0.6784)↓ 0.9226(0.6571)↓ 0.9280(0.5427) 0.9303(0.5813)

Recall 0.6632(0.8055) 0.6158(0.8745)↓ 0.5901(0.8805)⇓ 0.5839(0.8538)↓ 0.6170(0.8481)↓ 0.5896(0.8499)↓ 0.6400(0.8610)↓ 0.6026(0.8357)↓
Dice 0.6981(0.7290) 0.6794(0.8509)↓ 0.6536(0.8764)↓ 0.6600(0.8085)↓ 0.6719(0.7867)↓ 0.6573(0.7912)↓ 0.6812(0.8217)↓ 0.6607(0.7738)↓

Surface Dice 0.2202(0.5018) 0.2059(0.5057)↓ 0.1984(0.4930)↓ 0.1934(0.4977)↓ 0.2068(0.4881)↓ 0.1986(0.4883)↓ 0.2131(0.5000)↓ 0.1953(0.4841)↓
95% HD 43.3809(104.0801) 44.6122(120.9503)↓ 44.0028(125.7768)⇓ 45.7497(105.8861)↓ 45.1034(113.9017)↓ 44.8183(111.3264)↓ 45.1070(109.8194)↓ 46.5336(109.0000)↓

ASSD 12.3834(31.1955) 12.6862(40.9054)↓ 12.5830(48.6478)⇓ 12.7469(36.2192)↓ 12.9106(41.8862)↓ 13.4044(38.0981)↓ 12.4029(36.3908)↓ 13.2338(35.5076)↓

SK-UNet

Accuracy 0.9788(0.0695)↑ 0.9770(0.0758)↓ 0.9766(0.0746)↓ 0.9765(0.0749)↓ 0.9782(0.0707)↓ 0.9768(0.0735)↓ 0.9783(0.0711)↓ 0.9782(0.0731)↓
Precision 0.9410(0.2160)⇈ 0.9391(0.2862)↑ 0.9519(0.2015)↑ 0.9515(0.1821)↑ 0.9459(0.2332)↑ 0.9551(0.1972)↑ 0.9512(0.1933)↑ 0.9449(0.2149)↑

Recall 0.7138(0.7745)↑ 0.6801(0.8384)↓ 0.6719(0.8147)↓ 0.6613(0.7676)↓ 0.6947(0.7737)↓ 0.6645(0.7748)↓ 0.6891(0.7811)↓ 0.6895(0.7589)↓
Dice 0.7962(0.6818)⇑ 0.7632(0.7852)↓ 0.7696(0.7530)↓ 0.7673(0.6829)↓ 0.7915(0.6847)↓ 0.7656(0.7002)↓ 0.7959(0.7199)↓ 0.7975(0.6848)↓

Surface Dice 0.2477(0.4784)⇑ 0.2443(0.4988)↓ 0.2375(0.5054)↓ 0.2309(0.4910)↓ 0.2514(0.4837) 0.2335(0.4903)↓ 0.2352(0.4942)↓ 0.2477(0.4833)
95% HD 25.0145(71.6975)⇑ 26.8429(91.3646)⇓ 24.9881(79.3908)↓ 24.9978(71.1004)↓ 22.6616(73.3253)↓ 27.0186(74.1474)↓ 24.9828(77.0496)↓ 24.8936(74.9716)↓

ASSD 6.8208(25.0131)⇑ 7.6454(30.5339)⇓ 7.5756(28.4293)↓ 7.0575(25.0914)↓ 6.8483(26.0579)↓ 7.9184(24.9101)↓ 6.8478(26.8136)↓ 6.6065(26.9846)↓

CE-Net

Accuracy 0.9758(0.0662)↑ 0.9787(0.0621)↑ 0.9770(0.0664)↑ 0.9759(0.0639)↑ 0.9755(0.0648) 0.9757(0.0634)↑ 0.9756(0.0638) 0.9772(0.0629)↑
Precision 0.9576(0.1307)⇑ 0.9561(0.1204)↑ 0.9587(0.1313)↑ 0.9596(0.1162)↑ 0.9579(0.1271)↑ 0.9595(0.1381)↑ 0.9596(0.1215)↑ 0.9580(0.1298)↑

Recall 0.6958(0.7382) 0.7308(0.7000)↑ 0.6898(0.7067) 0.7009(0.6956) 0.6904(0.7465)↓ 0.6961(0.6999)↑ 0.6885(0.7518)↓ 0.7107(0.7376)↑
Dice 0.7761(0.6521)⇑ 0.8181(0.5777)↑ 0.7935(0.6154)↑ 0.7877(0.5778)↑ 0.7844(0.6489)↓ 0.7837(0.6015)↑ 0.7799(0.6785)↓ 0.8042(0.6421)↑

Surface Dice 0.2160(0.4615)↑ 0.2454(0.4837)↑ 0.2211(0.4657)↑ 0.2221(0.4708)↑ 0.2207(0.4667) 0.2159(0.4609) 0.2155(0.4720) 0.2254(0.4740)↑
95% HD 26.1226(63.3843)⇑ 23.4262(60.5176)↑ 25.0000(62.2287)↑ 24.2402(62.1917)↑ 25.6989(63.6817) 24.5839(60.3958)↑ 26.6120(64.8972) 24.8633(64.3813)↑

ASSD 7.4570(19.0626)⇑ 6.4707(18.7443)↑ 7.6320(18.5725)↑ 7.3579(18.7866)↑ 7.6032(19.6302) 7.5794(18.4065)↑ 7.4935(20.1577) 7.3445(19.1370)↑

RF-Net

Accuracy 0.9737(0.0688)↑ 0.9753(0.0673)↑ 0.9725(0.0718) 0.9711(0.0739)↓ 0.9738(0.0703)↑ 0.9741(0.0680)↑ 0.9745(0.0704)↑ 0.9719(0.0692)↓
Precision 0.9517(0.2321)⇑ 0.9509(0.1918)↑ 0.9536(0.2028) 0.9506(0.2555) 0.9504(0.2034) 0.9488(0.2154) 0.9524(0.2288) 0.9519(0.2183)↑

Recall 0.6243(0.7062) 0.6396(0.7226)↑ 0.6194(0.7538)↓ 0.5854(0.8097)↓ 0.6325(0.7219)↑ 0.6325(0.7354)↑ 0.6328(0.7164)↑ 0.6136(0.7557)↓
Dice 0.7147(0.6428)↑ 0.7478(0.6278)↑ 0.7236(0.6905) 0.6867(0.7688)↓ 0.7335(0.6393)↑ 0.7396(0.6439)↑ 0.7281(0.6538)↑ 0.7156(0.6857)↓

Surface Dice 0.1914(0.4212)↓ 0.1969(0.4314)↑ 0.1897(0.4203)↑ 0.1813(0.4472)↓ 0.1935(0.4327)↑ 0.1997(0.4300)↑ 0.1915(0.4235)↑ 0.1872(0.4333)
95% HD 28.1145(71.0219)⇑ 27.1779(73.6627) 28.8962(70.6754) 31.4241(79.2036)↓ 27.3881(70.9668)↑ 28.1068(71.7442)↑ 27.8867(70.0456)↑ 28.6756(73.3697)↓

ASSD 8.6616(22.9256)⇑ 8.1773(22.1687) 8.3263(21.8393) 9.4271(25.9172)↓ 8.2386(22.2027)↑ 8.2347(22.1428)↑ 8.4207(22.4048)↑ 8.7368(22.0914)↓

CDM

Accuracy 0.9764(0.0677)↑ 0.9778(0.0637)↑ 0.9759(0.0663) 0.9762(0.0678)↓ 0.9766(0.0656)↑ 0.9764(0.0641)↑ 0.9766(0.0646) 0.9757(0.0636)↑
Precision 0.9462(0.1726)⇑ 0.9452(0.1612)↑ 0.9528(0.1335)↑ 0.9490(0.1572)↑ 0.9483(0.1572)↑ 0.9498(0.1535)↑ 0.9472(0.1791)↑ 0.9467(0.1500)↑

Recall 0.6907(0.7467)↑ 0.7358(0.6788)↑ 0.6805(0.7292)↓ 0.6581(0.7707)↓ 0.6834(0.7189) 0.7024(0.7168) 0.6999(0.7299)↓ 0.6913(0.7465)
Dice 0.7708(0.6390)⇑ 0.7913(0.5466)↑ 0.7738(0.6208) 0.7526(0.6698)↓ 0.7661(0.6117)↑ 0.7778(0.5994)↑ 0.7750(0.6320) 0.7752(0.6612)↑

Surface Dice 0.2145(0.4416) 0.2345(0.4414)↑ 0.2147(0.4328) 0.2134(0.4484) 0.2189(0.4462) 0.2159(0.4315) 0.2235(0.4374) 0.2203(0.4404)↑
95% HD 25.0100(68.0246)⇑ 22.8266(63.6381)↑ 24.3719(61.1881) 26.1016(69.2196)↓ 23.8865(65.1068)↑ 24.0696(62.8778)↑ 24.7497(69.0205) 24.1770(66.8684)↑

ASSD 7.4515(21.1759)⇑ 6.8240(19.6096)↑ 7.2577(19.4848) 7.5373(21.9587)↓ 7.3114(20.6915)↑ 7.3469(20.1106)↑ 7.2525(21.4039) 7.3076(20.7223)↑
Average Rank in Friedman test 4.31 3.14 4.77 6.11 4.44 4.89 3.97 4.36

TABLE A9: Cross-dataset results: Testing external breast
ultrasound dataset with models trained based on Dataset 2.

Friedman test’s p-value: 4.5650e-8 (<0.05)
Nemenyi post hoc test: Figure A2 (b) Original Lee OBNLM DPAD PFDTV GLM DnCNN SARBM3D

U-Net

Accuracy 0.9684(0.0784) 0.9567(0.0985)↓ 0.9577(0.1031)↓ 0.9556(0.1073)↓ 0.9656(0.0898)↓ 0.9613(0.0991)↓ 0.9645(0.0997)↓ 0.9601(0.0854)
Precision 0.9168(0.1815) 0.9212(0.1948)↑ 0.9259(0.1619)↑ 0.9295(0.1926) 0.9245(0.1974) 0.9176(0.3202) 0.9134(0.2977)↑ 0.9288(0.1820)↑

Recall 0.7624(0.5514) 0.6853(0.5355)↓ 0.6634(0.6042)↓ 0.5497(0.6449)↓ 0.6357(0.6114)↓ 0.6595(0.6521)↓ 0.6671(0.5414)↓ 0.7631(0.6048)↓
Dice 0.7411(0.3392) 0.7404(0.3403)↓ 0.7148(0.4176)↓ 0.6687(0.4812)↓ 0.7282(0.4539)↓ 0.6907(0.4641)↓ 0.7405(0.4393)↓ 0.7454(0.4226)↓

Surface Dice 0.2367(0.2177) 0.2736(0.3163) 0.2416(0.3074) 0.2269(0.3132)↓ 0.2559(0.2990) 0.2436(0.3151)↓ 0.2331(0.3168)↓ 0.2560(0.3475)
95% HD 28.3196(44.8516) 36.1185(58.5858)↓ 31.2410(49.8734)↓ 39.6138(52.3062)↓ 31.8339(52.3547)↓ 35.6658(58.4864)↓ 29.6943(59.7646)↓ 31.9273(52.8318)

ASSD 8.2703(13.3725) 9.9958(17.0250)↓ 9.2848(19.1733)↓ 10.5811(19.4545)↓ 9.3181(18.8114)↓ 9.7996(18.1769)↓ 8.3911(19.7001)↓ 8.6238(18.6870)

SK-UNet

Accuracy 0.9680(0.0608)↑ 0.9698(0.0857)↓ 0.9711(0.0893)↓ 0.9680(0.0924)↓ 0.9686(0.0824)↓ 0.9698(0.0845)↓ 0.9687(0.0753) 0.9681(0.0833)↓
Precision 0.9058(0.1609) 0.9025(0.1440) 0.9066(0.1353)↑ 0.9281(0.1180)↑ 0.9002(0.1469)↑ 0.9164(0.1284)↑ 0.9144(0.1601)↑ 0.9181(0.1233)↑

Recall 0.8926(0.3703)↑ 0.7778(0.5702)↓ 0.7819(0.6726)↓ 0.7811(0.5937)↓ 0.7625(0.5465)↓ 0.7959(0.4779)↓ 0.8690(0.4108)↓ 0.7931(0.4473)↓
Dice 0.8659(0.1951)↑ 0.7867(0.3570)↓ 0.8376(0.4674)↓ 0.7744(0.3981)↓ 0.8237(0.3609)↓ 0.7807(0.3085)↓ 0.8426(0.2246) 0.8389(0.2792)↓

Surface Dice 0.2896(0.2297) 0.2560(0.2350) 0.2686(0.2567) 0.2445(0.2402) 0.2542(0.1941) 0.2722(0.2418) 0.3089(0.2447)↑ 0.2604(0.2644)
95% HD 23.6537(30.4490)↑ 32.2490(48.8453)↓ 26.8920(41.7068)↓ 26.6127(46.1652)↓ 27.1661(44.2495)↓ 26.5385(43.5174)↓ 25.9769(38.2566) 26.9258(41.7502)

ASSD 5.9422(8.0872)↑ 7.5645(15.9103)↓ 6.8787(13.3435)↓ 7.7472(14.1859)↓ 6.6356(13.2294)↓ 6.1197(13.3407) 6.1534(8.0758) 7.8350(10.3663)

CE-Net

Accuracy 0.9605(0.0818) 0.9715(0.0748)↑ 0.9644(0.0821)↑ 0.9627(0.0734) 0.9607(0.0839) 0.9605(0.0775)↑ 0.9620(0.0810) 0.9641(0.0769)↑
Precision 0.8866(0.1924) 0.9059(0.1277) 0.8975(0.2413) 0.8953(0.1732) 0.8856(0.2162) 0.8946(0.1728) 0.8972(0.1847)↑ 0.8843(0.2172)

Recall 0.7393(0.6294) 0.7993(0.5715)↑ 0.7777(0.5883)↑ 0.7085(0.6381) 0.7235(0.6038) 0.7062(0.5633)↑ 0.7399(0.6472)↓ 0.7716(0.5994)↑
Dice 0.8152(0.4550) 0.8347(0.3592)↑ 0.8161(0.3896) 0.7981(0.4645) 0.8016(0.4271) 0.7982(0.3785)↑ 0.8061(0.4632) 0.8249(0.4071)↑

Surface Dice 0.2650(0.2564) 0.2839(0.1945)↑ 0.2620(0.2531) 0.2359(0.2514) 0.2664(0.2529) 0.2543(0.2459) 0.2458(0.2640)↓ 0.2550(0.1990)
95% HD 29.1715(52.7498) 28.3121(45.5655)↑ 30.2257(50.7955) 31.0113(39.5577) 30.2564(50.3883)↓ 29.8730(43.6606) 28.5218(55.9158) 27.6659(53.7552)

ASSD 7.7540(15.2458) 6.5264(14.3065)↑ 7.4566(15.6270) 7.6468(14.7106) 7.3710(16.3539) 7.4710(13.4450)↑ 7.9769(18.1472) 6.9127(18.4551)↑

RF-Net

Accuracy 0.9348(0.1335)↓ 0.9538(0.1069)↑ 0.9240(0.1169)↓ 0.9153(0.1314)↓ 0.9348(0.1198) 0.9338(0.1183) 0.9344(0.1336) 0.9266(0.1187)
Precision 0.9511(0.1204)↑ 0.9474(0.1460) 0.9531(0.1202) 0.9477(0.1862) 0.9512(0.1308) 0.9443(0.1466) 0.9505(0.1208) 0.9474(0.1401)↓

Recall 0.3774(0.7402)⇓ 0.4522(0.6534)↑ 0.2994(0.6479)↓ 0.2430(0.5057)⇓ 0.3884(0.6655) 0.3797(0.6191) 0.3657(0.7414) 0.3868(0.6192)
Dice 0.5442(0.6754)⇓ 0.6162(0.4435)↑ 0.4515(0.6122)↓ 0.3899(0.6192)↓ 0.5533(0.5958) 0.5402(0.5623) 0.5309(0.6275) 0.5391(0.5263)

Surface Dice 0.1595(0.2903)⇓ 0.1925(0.2089)↑ 0.1544(0.2422) 0.1273(0.2526)↓ 0.1473(0.2475) 0.1649(0.2341) 0.1504(0.2616) 0.1714(0.2519)
95% HD 39.1688(45.4104)↓ 34.0029(52.3981)↑ 43.1045(61.5737)↓ 45.7257(64.8624)↓ 38.4421(46.6271) 37.5207(45.8516) 39.8409(45.2801) 42.5535(48.3693)

ASSD 12.3765(18.7740)↓ 10.7504(18.2829)↑ 15.1819(21.4175)↓ 15.3699(23.8045)↓ 13.3528(20.0250) 11.9456(18.6493) 12.5368(17.4779) 13.7182(19.7442)

CDM

Accuracy 0.9603(0.1117)↓ 0.9736(0.1014)↑ 0.9667(0.1175) 0.9564(0.1059)↓ 0.9523(0.1172)↓ 0.9560(0.1208) 0.9607(0.1103) 0.9677(0.1003)↑
Precision 0.9294(0.1913) 0.9259(0.1179) 0.9324(0.1480)↑ 0.9263(0.1922) 0.9379(0.1217) 0.9272(0.1236) 0.9286(0.1393)↑ 0.9057(0.1740)

Recall 0.5654(0.7851)↓ 0.8245(0.5616)↑ 0.6486(0.7121) 0.5312(0.6791)↓ 0.4615(0.7254)↓ 0.5833(0.7084) 0.5700(0.7561) 0.7926(0.7531)↑
Dice 0.6825(0.6352)↓ 0.8030(0.3447)↑ 0.7341(0.5599)↑ 0.6590(0.5325)↓ 0.6232(0.5687)↓ 0.7115(0.5143) 0.6952(0.5853) 0.7772(0.5701)↑

Surface Dice 0.2197(0.2783) 0.2872(0.2973)↑ 0.2413(0.2122)↑ 0.2319(0.2841)↓ 0.1977(0.2544) 0.2096(0.2847) 0.2187(0.2749) 0.2545(0.2105)
95% HD 31.7566(73.1958) 20.9662(45.2698)↑ 29.8685(50.2360) 37.6894(62.2637)↓ 32.0000(68.3409)↓ 29.1959(71.7796) 31.4431(71.8061) 23.7413(63.1996)↑

ASSD 8.7354(19.7275) 5.7014(13.9476)↑ 8.4731(19.3527) 9.9771(23.3015)↓ 9.1378(22.3696)↓ 8.3537(21.7226) 8.7286(21.3623) 5.9710(19.0788)↑
Average Rank in Friedman test 3.94 3.14 4.2 6.69 5.2 4.74 4.31 3.77
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TABLE A10: Cross-dataset results: Testing Dataset 4 with
models trained based on Dataset 3.

Friedman test’s p-value: 6.9152e-11 (<0.05)
Nemenyi post hoc test: Figure A2 (c) Original Lee OBNLM DPAD PFDTV GLM DnCNN SARBM3D

U-Net

Accuracy 0.9815(0.0189) 0.9809(0.0137)⇑ 0.9818(0.0140)⇑ 0.9847(0.0089)⇑ 0.9847(0.0103)⇑ 0.9847(0.0096)⇑ 0.9837(0.0118)⇑ 0.9801(0.0165)
Precision 0.9529(0.0823) 0.9031(0.1072)⇓ 0.9530(0.0669)⇑ 0.9225(0.0816)↓ 0.9571(0.0614)⇑ 0.9518(0.0645)⇑ 0.9550(0.0681)⇑ 0.8856(0.1427)⇓

Recall 0.8516(0.2245) 0.9137(0.1023)⇑ 0.8570(0.1379)⇑ 0.9264(0.0700)⇑ 0.8805(0.1081)⇑ 0.8849(0.0969)⇑ 0.8731(0.1364)⇑ 0.9169(0.0906)⇑
Dice 0.8827(0.1137) 0.8963(0.0776)⇑ 0.8910(0.0743)⇑ 0.9129(0.0499)⇑ 0.9080(0.0555)⇑ 0.9070(0.0509)⇑ 0.8995(0.0743)⇑ 0.8861(0.0749)⇑

Surface Dice 0.5317(0.3125) 0.5422(0.2728)⇑ 0.5254(0.2825)⇑ 0.6247(0.2511)⇑ 0.5983(0.2597)⇑ 0.6034(0.2577)⇑ 0.5741(0.2840)⇑ 0.5224(0.2735)
95% HD 4.1139(6.2195) 4.0000(3.4031)⇑ 4.0000(2.7787)⇑ 3.1623(1.2947)⇑ 3.1623(1.6437)⇑ 3.1623(1.2947)⇑ 3.6056(2.1849)⇑ 4.2426(3.7445)⇑

ASSD 1.6612(1.6400) 1.6705(1.1630)⇑ 1.5934(1.0713)⇑ 1.3566(0.6497)⇑ 1.3746(0.7855)⇑ 1.3651(0.6883)⇑ 1.4769(0.9546)⇑ 1.7502(1.2153)⇑

DAEFF-Net

Accuracy 0.9816(0.0108)⇑ 0.9829(0.0105)⇑ 0.9813(0.0125)⇓ 0.9826(0.0105)⇑ 0.9815(0.0115)↓ 0.9815(0.0122)↓ 0.9810(0.0112)⇓ 0.9813(0.0128)⇓
Precision 0.9537(0.0678)⇑ 0.9522(0.0661)↓ 0.9425(0.0780)⇓ 0.9552(0.0626)↑ 0.9594(0.0601)↑ 0.9742(0.0523)⇑ 0.9605(0.0584)⇑ 0.9492(0.0698)⇓

Recall 0.8427(0.1232)⇑ 0.8616(0.1170)⇑ 0.8482(0.1113)⇑ 0.8499(0.1140)⇑ 0.8318(0.1268)⇓ 0.8197(0.1242)⇓ 0.8264(0.1219)⇓ 0.8416(0.1158)↑
Dice 0.8851(0.0654)⇑ 0.8949(0.0586)⇑ 0.8844(0.0625) 0.8924(0.0592)⇑ 0.8836(0.0653)↓ 0.8827(0.0682)↓ 0.8813(0.0660)⇓ 0.8837(0.0638)↓

Surface Dice 0.5166(0.2386) 0.5538(0.2441)⇑ 0.5113(0.2500) 0.5472(0.2383)⇑ 0.5075(0.2469)↓ 0.5042(0.2620)↓ 0.4929(0.2416)⇓ 0.5028(0.2492)↓
95% HD 4.0000(2.0000)⇑ 3.9704(2.0000)⇑ 4.1170(2.3852)⇓ 4.0000(2.0000)⇑ 4.0000(2.0000)↓ 4.0000(2.0990) 4.0000(1.8526)↓ 4.0000(2.3566)↓

ASSD 1.6542(0.8146)⇑ 1.5321(0.8077)⇑ 1.6925(0.9166)↓ 1.5634(0.8178)⇑ 1.6834(0.8624)↓ 1.6970(0.9371)⇓ 1.7333(0.8574)⇓ 1.6870(0.9272)⇓

RF-Net

Accuracy 0.9846(0.0092)⇑ 0.9846(0.0090)↑ 0.9833(0.0118)⇓ 0.9850(0.0088)⇑ 0.9838(0.0096)⇓ 0.9827(0.0118)⇓ 0.9836(0.0097)⇓ 0.9838(0.0109)⇓
Precision 0.9578(0.0581)⇑ 0.9360(0.0719)⇓ 0.9602(0.0584)↑ 0.9474(0.0615)⇓ 0.9569(0.0600)↓ 0.9733(0.0489)⇑ 0.9490(0.0633)⇓ 0.9445(0.0677)⇓

Recall 0.8785(0.0875)⇑ 0.9046(0.0801)⇑ 0.8575(0.1011)⇓ 0.8942(0.0826)⇑ 0.8699(0.0951)⇓ 0.8383(0.1065)⇓ 0.8764(0.0900)↓ 0.8802(0.0926)↑
Dice 0.9070(0.0460)⇑ 0.9119(0.0474)⇑ 0.8979(0.0546)⇓ 0.9116(0.0456)⇑ 0.9020(0.0523)⇓ 0.8930(0.0569)⇓ 0.9020(0.0496)⇓ 0.9021(0.0495)⇓

Surface Dice 0.5500(0.2428)⇑ 0.5642(0.2201)⇑ 0.5130(0.2538)⇓ 0.5720(0.2303)⇑ 0.5300(0.2357)⇓ 0.4826(0.2424)⇓ 0.5241(0.2274)⇓ 0.5244(0.2488)⇓
95% HD 4.0000(2.0000)⇑ 4.0000(2.0000)↑ 4.1231(2.6569)⇓ 4.0000(2.0000)↑ 4.0000(1.8621)⇓ 4.1231(2.3446)⇓ 4.0000(1.9367)⇓ 4.0462(2.3852)⇓

ASSD 1.5663(0.7769)⇑ 1.5303(0.7386)⇑ 1.7154(0.9436)⇓ 1.5188(0.7086)⇑ 1.6544(0.8197)⇓ 1.7812(0.9981)⇓ 1.6575(0.8176)⇓ 1.6559(0.8944)⇓

CDM

Accuracy 0.9819(0.0118)⇑ 0.9824(0.0114)↑ 0.9764(0.0154)⇓ 0.9809(0.0117)↓ 0.9805(0.0125)⇓ 0.9809(0.0128)⇓ 0.9802(0.0127)⇓ 0.9765(0.0178)⇓
Precision 0.9456(0.0746) 0.9209(0.1000)⇓ 0.9275(0.0993)⇓ 0.9404(0.0827)↓ 0.9372(0.0852)⇓ 0.9352(0.0907)⇓ 0.9356(0.0815)⇓ 0.9066(0.1123)⇓

Recall 0.8623(0.1140)⇑ 0.9044(0.0983)⇑ 0.8229(0.1327)⇓ 0.8601(0.1215)↓ 0.8554(0.1127)⇓ 0.8663(0.1172)↑ 0.8566(0.1154)↓ 0.8398(0.1357)⇓
Dice 0.8893(0.0625)⇑ 0.8993(0.0566)⇑ 0.8582(0.0746)⇓ 0.8839(0.0645)⇓ 0.8816(0.0636)⇓ 0.8849(0.0626)⇓ 0.8826(0.0616)⇓ 0.8633(0.0804)⇓

Surface Dice 0.5343(0.2442)⇑ 0.5494(0.2608)⇑ 0.4245(0.2118)⇓ 0.5123(0.2431)⇓ 0.4885(0.2469)⇓ 0.5013(0.2409)⇓ 0.4961(0.2432)⇓ 0.4181(0.2632)⇓
95% HD 4.0000(2.0000)⇑ 3.6056(2.0000)↑ 5.0000(2.7583)⇓ 4.0739(2.0224)↓ 4.1231(2.2229)⇓ 4.0000(2.2311)⇓ 4.1231(2.3852)⇓ 4.6041(3.2330)⇓

ASSD 1.6281(0.8814)⇑ 1.5615(0.8352)↑ 2.1100(1.1520)⇓ 1.7119(0.8771)⇓ 1.7645(0.9430)⇓ 1.6937(0.9214)⇓ 1.7546(0.9172)⇓ 2.1006(1.3176)⇓
Average Rank in Friedman test 3.82 2.98 6.29 2.64 4.29 4.59 5.18 6.21

TABLE A11: Cross-dataset results: Testing external echocar-
diography dataset with models trained based on Dataset 3.

Friedman test’s p-value: 1.1083e-10 (<0.05)
Nemenyi post hoc test: Figure A2 (d) Original Lee OBNLM DPAD PFDTV GLM DnCNN SARBM3D

U-Net

Accuracy 0.9790(0.0096) 0.9782(0.0113)⇓ 0.9781(0.0104)↓ 0.9789(0.0104) 0.9780(0.0115)↓ 0.9774(0.0107)⇓ 0.9786(0.0108)↓ 0.9790(0.0108)↓
Precision 0.9237(0.0982) 0.9140(0.1101)⇓ 0.9280(0.0957)↓ 0.9316(0.0961)↑ 0.9363(0.0935) 0.9198(0.1057) 0.9260(0.0946) 0.9215(0.1094)↓

Recall 0.8362(0.1458) 0.8587(0.1878)↑ 0.8417(0.1682)↑ 0.8412(0.1568)↓ 0.8297(0.1522)↓ 0.8315(0.1656)↓ 0.8377(0.1537) 0.8504(0.1535)↑
Dice 0.8771(0.0813) 0.8675(0.0683)↓ 0.8725(0.0728) 0.8759(0.0780) 0.8759(0.0807)↓ 0.8646(0.0840)⇓ 0.8741(0.0775)↓ 0.8721(0.0611)

Surface Dice 0.4966(0.1975) 0.4775(0.2097)↓ 0.4650(0.2076)↓ 0.4794(0.2245) 0.4598(0.1979)↓ 0.4528(0.2007)⇓ 0.4726(0.2065)↓ 0.4830(0.2086)↓
95% HD 4.4721(2.1585) 5.0000(2.2254)↓ 4.4721(2.3944) 4.4721(2.0513) 5.0000(2.2254)↓ 5.0000(2.0592)⇓ 4.4721(2.3944) 4.4721(2.2029)

ASSD 1.9780(0.8652) 1.9952(1.0057)↓ 1.9597(0.9315)↓ 1.9757(0.8911) 2.0566(0.9417)↓ 2.1007(0.9234)⇓ 2.0276(0.9773)↓ 1.9033(0.8260)↓

DAEFF-Net

Accuracy 0.9782(0.0116)↓ 0.9782(0.0117) 0.9763(0.0118)↓ 0.9778(0.0120)↓ 0.9770(0.0109)↓ 0.9765(0.0123)⇓ 0.9767(0.0135)↓ 0.9764(0.0135)↓
Precision 0.9310(0.0841) 0.9178(0.0982)↓ 0.9289(0.0879)↓ 0.9307(0.0865)↓ 0.9316(0.0888)↓ 0.9297(0.0990) 0.9347(0.0809)↑ 0.9270(0.1102)↓

Recall 0.8122(0.1596)↓ 0.8413(0.1718)↑ 0.8071(0.1701) 0.8146(0.1681) 0.8023(0.1712)↓ 0.8115(0.1683)↓ 0.8076(0.1629)↓ 0.8064(0.1927)
Dice 0.8683(0.0857)↓ 0.8703(0.0775)↑ 0.8663(0.0784)↓ 0.8668(0.0888) 0.8673(0.0907)↓ 0.8558(0.1039)↓ 0.8588(0.0882)↓ 0.8575(0.0871)↓

Surface Dice 0.4067(0.2307)⇓ 0.4285(0.2438)↑ 0.4063(0.2162) 0.4078(0.1974) 0.4161(0.2160) 0.3894(0.2120)↓ 0.4057(0.2143) 0.4049(0.2333)
95% HD 4.4721(2.3944) 4.5249(1.9133) 5.0000(2.0000)↓ 4.4721(2.3944)↓ 5.0000(2.0000)↓ 5.0000(2.3944)↓ 5.0000(2.3944)↓ 5.0000(2.3944)↓

ASSD 2.0261(1.0277)↓ 2.0666(0.8750) 2.1913(0.9572)↓ 2.0475(0.9774)↓ 2.0599(1.0727)↓ 2.2182(1.2227)⇓ 2.1124(1.0834)↓ 2.2494(0.9386)↓

RF-Net

Accuracy 0.9797(0.0096) 0.9794(0.0090) 0.9779(0.0104)↓ 0.9801(0.0102) 0.9788(0.0105)↓ 0.9776(0.0107)⇓ 0.9788(0.0098)↓ 0.9792(0.0092)
Precision 0.9350(0.0805)↑ 0.9015(0.1160)⇓ 0.9342(0.0935) 0.9357(0.0898)↓ 0.9376(0.0818) 0.9360(0.0897)↑ 0.9339(0.0898)↓ 0.9210(0.1116)⇓

Recall 0.8296(0.1635) 0.8720(0.1624)⇑ 0.8213(0.1802)↓ 0.8379(0.1632)↑ 0.8242(0.1612)↓ 0.8079(0.1689)⇓ 0.8280(0.1635)↓ 0.8480(0.1607)↑
Dice 0.8789(0.0696) 0.8745(0.0576) 0.8758(0.0815)↓ 0.8807(0.0709)↑ 0.8775(0.0835)↓ 0.8733(0.0809)⇓ 0.8784(0.0733)↓ 0.8794(0.0626)

Surface Dice 0.4254(0.1709)⇓ 0.4370(0.1747) 0.4374(0.1754) 0.4409(0.2019)↑ 0.4147(0.1799)↓ 0.4112(0.2260)↓ 0.4312(0.1815)↓ 0.4513(0.1571)
95% HD 5.0000(2.0000)⇓ 5.0000(2.4396) 5.3852(2.2445)↓ 5.0000(2.0000) 5.0198(2.3246)↓ 5.0990(2.8769)⇓ 5.0000(1.8769)↓ 5.0000(2.0497)↓

ASSD 2.1600(0.9933)⇓ 2.1265(0.8845) 2.2734(0.9904)↓ 2.1307(0.9451)↑ 2.2126(1.0995)↓ 2.3606(1.1977)⇓ 2.1997(0.9239)↓ 2.1430(0.7100)

CDM

Accuracy 0.9791(0.0088) 0.9790(0.0098) 0.9762(0.0114)⇓ 0.9786(0.0100)↓ 0.9770(0.0108)⇓ 0.9765(0.0109)⇓ 0.9780(0.0102)⇓ 0.9772(0.0105)↓
Precision 0.9287(0.0856) 0.9115(0.1009)⇓ 0.9341(0.0821) 0.9221(0.0882)↓ 0.9317(0.0793) 0.9328(0.0842)↑ 0.9323(0.0773) 0.9161(0.1030)⇓

Recall 0.8249(0.1507)↓ 0.8444(0.1500)⇑ 0.7780(0.1778)⇓ 0.8138(0.1698)↓ 0.7915(0.1670)⇓ 0.7836(0.1576)⇓ 0.7927(0.1591)↓ 0.8185(0.1611)↑
Dice 0.8726(0.0740)↓ 0.8748(0.0692) 0.8452(0.0849)⇓ 0.8732(0.0780)↓ 0.8587(0.0887)⇓ 0.8483(0.0871)⇓ 0.8557(0.0893)↓ 0.8670(0.0787)↓

Surface Dice 0.4766(0.1921)↓ 0.4806(0.2100) 0.4593(0.1892)↓ 0.4435(0.1974)↓ 0.4452(0.1834)↓ 0.4254(0.2282)⇓ 0.4485(0.1989)↓ 0.4605(0.1874)↓
95% HD 5.0000(2.0897) 4.4721(1.7796) 5.1276(2.2361)⇓ 4.4721(2.2254) 5.0000(2.0000)⇓ 5.0000(2.5851)⇓ 5.0000(2.0000)↓ 5.0000(2.0745)↓

ASSD 2.0000(0.8477) 1.9744(0.7586) 2.2997(1.0099)⇓ 2.0564(0.9241)↓ 2.1990(1.0080)⇓ 2.1695(1.0390)⇓ 2.1634(0.8993)⇓ 2.0693(0.8430)↓
Average Rank in Friedman test 2.96 3.54 5.64 2.89 5.12 6.71 4.7 4.43

TABLE A12: Cross-dataset results: Testing Dataset 3 with
models trained based on Dataset 4.

Friedman test’s p-value: 2.1029e-6 (<0.05)
Nemenyi post hoc test: Figure A2 (e) Original Lee OBNLM DPAD PFDTV GLM DnCNN SARBM3D

U-Net

Accuracy 0.7937(0.0482) 0.8714(0.0499)⇑ 0.8757(0.0569)⇑ 0.8596(0.0444)⇑ 0.8597(0.0446)⇑ 0.8066(0.0630)⇑ 0.8745(0.0577)⇑ 0.8952(0.0529)⇑
Precision 0.2627(0.1259) 0.3465(0.1657)⇑ 0.3850(0.1833)⇑ 0.3541(0.1552)⇑ 0.3360(0.1526)⇑ 0.2813(0.1527)⇑ 0.3693(0.1626)⇑ 0.4284(0.2025)⇑

Recall 0.7866(0.1898) 0.5236(0.2898)⇓ 0.6669(0.2542)⇓ 0.7494(0.2144)⇓ 0.6488(0.2345)⇓ 0.8056(0.2001)⇑ 0.6306(0.3313)⇓ 0.5552(0.3002)⇓
Dice 0.3892(0.1382) 0.4140(0.1524)⇑ 0.4795(0.1585)⇑ 0.4692(0.1432)⇑ 0.4382(0.1460)⇑ 0.4114(0.1650)⇑ 0.4582(0.1553)⇑ 0.4796(0.1818)⇑

Surface Dice 0.0336(0.0235) 0.0283(0.0275)⇓ 0.0407(0.0307)⇑ 0.0369(0.0263)⇑ 0.0371(0.0262)⇑ 0.0324(0.0224)⇓ 0.0371(0.0263)⇑ 0.0368(0.0342)⇑
95% HD 221.0000(43.5604) 203.4477(64.1128)⇑ 192.7969(63.0190)⇑ 218.0704(58.6624)⇑ 206.1094(60.1888)⇑ 200.9237(45.9081)⇑ 204.0485(71.4974)⇑ 187.6578(75.9025)⇑

ASSD 60.0113(12.7030) 57.6862(12.7277)⇑ 50.8615(13.0361)⇑ 56.1296(13.9475)⇑ 56.0466(13.1974)⇑ 55.8893(13.8419)⇑ 53.5421(13.3700)⇑ 51.9423(15.0031)⇑

DAEFF-Net

Accuracy 0.9805(0.0150)⇑ 0.9810(0.0145) 0.9800(0.0150)↓ 0.9802(0.0149) 0.9806(0.0145) 0.9793(0.0161)⇓ 0.9799(0.0144)↓ 0.9777(0.0181)⇓
Precision 0.8793(0.1370)⇑ 0.8986(0.1222)⇑ 0.8529(0.1454)⇓ 0.8684(0.1427)⇓ 0.8673(0.1411)⇓ 0.8508(0.1468)⇓ 0.8568(0.1497)⇓ 0.8483(0.1709)⇓

Recall 0.9276(0.1083)⇑ 0.9077(0.1208)⇓ 0.9539(0.0764)⇑ 0.9405(0.0925)⇑ 0.9413(0.0926)⇑ 0.9521(0.0884)⇑ 0.9525(0.0775)⇑ 0.9356(0.0980)↑
Dice 0.8894(0.0753)⇑ 0.8885(0.0775)⇓ 0.8913(0.0792)↓ 0.8910(0.0793)↑ 0.8912(0.0778) 0.8868(0.0880)⇓ 0.8908(0.0821) 0.8768(0.1018)⇓

Surface Dice 0.1330(0.1059)⇑ 0.1361(0.1027)↑ 0.1260(0.1070)⇓ 0.1369(0.1091)↑ 0.1327(0.1069) 0.1227(0.1082)⇓ 0.1315(0.1107)↓ 0.1275(0.1064)⇓
95% HD 20.4052(32.3874)⇑ 20.8661(20.0624)⇑ 19.9267(15.6776)⇑ 21.0083(49.4381)⇊ 20.2199(24.3275)⇑ 21.0000(20.5855)⇑ 20.6420(21.8579)⇑ 26.0000(55.2185)⇓

ASSD 8.4027(7.9564)⇑ 8.1464(6.5088)↑ 8.0898(5.9321)⇑ 8.4847(8.6123) 8.2694(7.5507)↑ 8.5562(6.8227)↓ 8.4291(7.1966)⇑ 10.0928(9.4482)⇓

RF-Net

Accuracy 0.9738(0.0252)⇑ 0.9520(0.0451)⇓ 0.9799(0.0151)⇑ 0.9705(0.0278)⇓ 0.9683(0.0295)⇓ 0.9737(0.0217)⇈ 0.9701(0.0288)⇓ 0.9600(0.0367)⇓
Precision 0.9541(0.0894)⇑ 0.9579(0.0977)⇊ 0.9137(0.1278)⇓ 0.9380(0.0948)⇓ 0.9120(0.1254)⇓ 0.8995(0.1326)⇓ 0.9421(0.0944)⇓ 0.9604(0.0875)

Recall 0.7582(0.2979)⇓ 0.4275(0.4835)⇓ 0.8790(0.1348)⇑ 0.7243(0.2931)⇓ 0.7156(0.3071)⇓ 0.8183(0.2307)⇑ 0.7150(0.3500)⇓ 0.5593(0.4916)⇓
Dice 0.8334(0.1856)⇑ 0.5836(0.4640)⇓ 0.8791(0.0886)⇑ 0.8115(0.1941)⇓ 0.7902(0.2035)⇓ 0.8428(0.1402)⇑ 0.8042(0.2334)⇓ 0.7016(0.4101)⇓

Surface Dice 0.1121(0.1034)⇑ 0.0677(0.0935)⇓ 0.1225(0.0992)⇑ 0.1128(0.0908)↑ 0.1089(0.0789)⇓ 0.1125(0.0848) 0.1131(0.0937) 0.0763(0.0958)⇓
95% HD 33.0000(32.2642)⇑ 53.7203(57.5307)⇓ 20.8680(17.2372)⇑ 40.1507(38.6274)⇓ 40.7085(36.6978)⇓ 31.0000(35.1996)⇓ 38.0542(29.6330)⇓ 46.2443(43.7531)⇓

ASSD 10.9578(9.5943)⇑ 18.1154(17.5563)⇓ 8.3100(5.7172)⇑ 12.6260(10.7422)↓ 12.6414(9.3163) 11.2824(8.6093) 11.6297(8.8234)⇓ 15.4775(14.5021)⇓

CDM

Accuracy 0.9773(0.0190)⇑ 0.9705(0.0226)⇓ 0.9761(0.0190)↓ 0.9749(0.0215)⇓ 0.9667(0.0276)⇓ 0.9674(0.0299)⇓ 0.9701(0.0281)⇓ 0.9753(0.0210)⇓
Precision 0.8890(0.1456)⇑ 0.8829(0.1568)⇓ 0.8407(0.1689)⇓ 0.8581(0.1539)⇓ 0.7807(0.2105)⇓ 0.8110(0.1898)⇓ 0.8855(0.1466)⇓ 0.8871(0.1385)

Recall 0.8705(0.1613)⇑ 0.7958(0.2060)⇓ 0.9169(0.1042)⇑ 0.8825(0.1612)↑ 0.9067(0.1314)⇑ 0.8662(0.2036)⇓ 0.7884(0.3382)⇓ 0.8436(0.1776)⇓
Dice 0.8650(0.1112)⇑ 0.8221(0.1403)⇓ 0.8655(0.1026)⇑ 0.8555(0.1182)⇓ 0.8193(0.1421)⇓ 0.8127(0.1549)⇓ 0.8207(0.2132)⇓ 0.8525(0.1137)⇓

Surface Dice 0.1204(0.0971)⇑ 0.1007(0.0906)⇓ 0.1214(0.0967)↓ 0.1185(0.0979)⇓ 0.1046(0.0896)⇓ 0.0986(0.0819)⇓ 0.1056(0.0960)⇓ 0.1206(0.0979)↓
95% HD 28.6378(57.7479)⇑ 97.9805(111.0657)⇓ 29.4143(89.7953)⇓ 41.0122(98.8333)⇓ 117.5846(115.5372)⇓ 83.7938(99.0376)⇓ 41.5455(71.3748)⇓ 39.9017(83.0142)⇓

ASSD 10.7870(11.1608)⇑ 19.5611(16.7740)⇓ 11.6229(12.0033)↓ 13.5634(14.7095)⇓ 21.6401(16.7787)⇓ 18.5607(15.1026)⇓ 13.2776(14.3364)⇓ 13.2493(12.8588)⇓
Average Rank in Friedman test 3.89 5.68 2.25 4.29 5.18 5.43 4.43 4.86

TABLE A13: Cross-dataset results: Testing external echocar-
diography dataset with models trained based on Dataset 4.

Friedman test’s p-value: 0.0002 (<0.05)
Nemenyi post hoc test: Figure A2 (f) Original Lee OBNLM DPAD PFDTV GLM DnCNN SARBM3D

U-Net

Accuracy 0.9338(0.0275) 0.9475(0.0229)⇑ 0.9605(0.0190)⇑ 0.9485(0.0290)⇑ 0.9546(0.0254)⇑ 0.9049(0.0372)⇓ 0.9616(0.0205)⇑ 0.9475(0.0304)⇑
Precision 0.5887(0.1735) 0.6524(0.1703)⇑ 0.7579(0.1657)⇑ 0.6797(0.2162)⇑ 0.7262(0.2002)⇑ 0.4740(0.1690)⇓ 0.8057(0.2012)⇑ 0.6524(0.2392)⇑

Recall 0.8484(0.1340) 0.8547(0.1168)↑ 0.8649(0.1422)↑ 0.8507(0.1405)↑ 0.8235(0.1299)↓ 0.8520(0.1314)↑ 0.8136(0.1300)⇓ 0.8552(0.1343)↑
Dice 0.6906(0.1449) 0.7294(0.1352)⇑ 0.7876(0.1160)⇑ 0.7415(0.1443)⇑ 0.7508(0.1337)⇑ 0.6001(0.1523)⇓ 0.7908(0.1261)⇑ 0.7411(0.1505)⇑

Surface Dice 0.0483(0.0370) 0.0567(0.0379)↑ 0.0659(0.0659)⇑ 0.0557(0.0382)↑ 0.0635(0.0440)⇑ 0.0394(0.0316)⇓ 0.0809(0.0551)⇑ 0.0549(0.0430)↑
95% HD 191.8153(36.6951) 174.7519(32.1063)⇑ 166.6681(36.1233)⇑ 162.6045(37.1897)⇑ 168.6860(33.6224)⇑ 205.2848(35.2753)⇓ 141.3239(49.4307)⇑ 169.8898(37.0860)⇑

ASSD 53.4034(10.9307) 47.8683(10.2593)⇑ 40.4485(9.6761)⇑ 45.3561(14.2031)⇑ 43.1374(11.5767)⇑ 58.6382(10.9317)⇓ 30.8103(17.8159)⇑ 44.1511(10.9049)⇑

DAEFF-Net

Accuracy 0.9795(0.0117)⇑ 0.9796(0.0111)↑ 0.9790(0.0099) 0.9790(0.0117) 0.9787(0.0113) 0.9788(0.0122)⇊ 0.9792(0.0103) 0.9793(0.0122)
Precision 0.8997(0.0757)⇑ 0.8946(0.0881) 0.9011(0.0696)↑ 0.8938(0.0856)↓ 0.8983(0.0785) 0.8957(0.0867) 0.8947(0.0838)↓ 0.8950(0.0819)

Recall 0.8806(0.1303)⇑ 0.8857(0.1268)↑ 0.8787(0.1206)↓ 0.8901(0.1143)↑ 0.8846(0.1243) 0.8835(0.1365) 0.8875(0.1313)↑ 0.8793(0.1283)
Dice 0.8814(0.0769)⇑ 0.8809(0.0670)↑ 0.8844(0.0672) 0.8795(0.0696) 0.8815(0.0751) 0.8823(0.0774) 0.8820(0.0714) 0.8812(0.0747)

Surface Dice 0.1134(0.0987)⇑ 0.1123(0.0967) 0.1068(0.0939) 0.1180(0.0909)↓ 0.1219(0.0926) 0.1077(0.0974) 0.1143(0.0932) 0.1203(0.0965)
95% HD 21.0238(17.6689)⇑ 20.2485(13.7323)↑ 21.3227(13.4632)⇑ 21.2132(17.2781) 21.5708(15.5699) 21.5870(15.7805) 21.2132(15.7943)↑ 21.2132(16.0641)

ASSD 8.6002(5.7095)⇑ 8.6108(4.8629)↑ 8.7495(4.7492) 8.8870(5.3876) 8.8731(4.9817) 8.9817(5.4664) 8.7768(5.4394) 8.9792(5.5670)

RF-Net

Accuracy 0.9812(0.0091)⇑ 0.9807(0.0091)↓ 0.9809(0.0089) 0.9809(0.0092)↓ 0.9812(0.0095)↓ 0.9795(0.0094)⇓ 0.9808(0.0092)↓ 0.9795(0.0092)↓
Precision 0.9131(0.0832)⇑ 0.9061(0.0765)↓ 0.9119(0.0825) 0.9027(0.0784)↓ 0.9111(0.0849)↓ 0.9019(0.0938)⇓ 0.9088(0.0859)↓ 0.9032(0.0782)↓

Recall 0.8772(0.1351)⇑ 0.8777(0.1388) 0.8800(0.1193) 0.8873(0.1213)↑ 0.8804(0.1327)↑ 0.8759(0.1424)⇓ 0.8815(0.1331)↑ 0.8827(0.1395)↑
Dice 0.8926(0.0588)⇑ 0.8909(0.0629)↓ 0.8899(0.0606) 0.8935(0.0614)↓ 0.8926(0.0607) 0.8889(0.0646)⇓ 0.8915(0.0558)↓ 0.8893(0.0642)↓

Surface Dice 0.1170(0.0971)⇑ 0.1251(0.1109) 0.1155(0.0798) 0.1190(0.1028)↓ 0.1168(0.0938) 0.1099(0.0911)↓ 0.1150(0.0855)↓ 0.1217(0.1068)
95% HD 19.3440(11.2234)⇑ 19.4165(11.7998)↓ 19.6123(10.5681) 19.0000(11.4028) 19.0000(10.9667) 20.2485(13.1399)⇓ 18.9947(11.6571) 19.7990(11.2570)

ASSD 7.6890(3.6824)⇑ 8.2565(4.2476)↓ 8.1612(3.7459) 8.1418(3.7280)↓ 7.9993(3.7142) 8.4696(4.2535)⇓ 7.9033(3.7621) 8.3581(4.1549)↓

CDM

Accuracy 0.9803(0.0109)⇑ 0.9791(0.0117)↓ 0.9758(0.0185)⇓ 0.9791(0.0121)↓ 0.9793(0.0117)↓ 0.9794(0.0111)⇊ 0.9810(0.0113)↑ 0.9781(0.0118)⇓
Precision 0.9039(0.1078)⇑ 0.8747(0.1044)⇓ 0.8513(0.1526)⇓ 0.8735(0.1154)⇓ 0.8891(0.1049)↓ 0.8921(0.1115)⇊ 0.9023(0.1096)↑ 0.8603(0.1233)⇓

Recall 0.9051(0.1196)⇑ 0.9046(0.1154)↑ 0.9041(0.1174)↑ 0.9162(0.1192)↑ 0.9087(0.1245)↑ 0.9096(0.1324) 0.9053(0.1232)↑ 0.9175(0.1279)↑
Dice 0.8860(0.0657)⇑ 0.8822(0.0801)↓ 0.8674(0.1070)⇓ 0.8831(0.0733)↓ 0.8811(0.0747)↓ 0.8871(0.0721)⇊ 0.8867(0.0639)↑ 0.8792(0.0869)↓

Surface Dice 0.1135(0.0950)⇑ 0.0977(0.0876)↓ 0.0924(0.0804)⇓ 0.1004(0.0827)↓ 0.1053(0.1008) 0.1067(0.0972) 0.1130(0.0941) 0.1033(0.1013)
95% HD 19.9249(14.9397)⇑ 20.0000(16.6412)↓ 157.0207(182.3357)⇓ 21.5870(22.4872)⇓ 21.0000(18.4354)↓ 20.2485(17.7836)⇊ 19.6774(14.7994) 22.7186(25.4467)⇓

ASSD 8.2211(4.4546)⇑ 8.5548(6.2275)↓ 20.9096(24.1029)⇓ 8.6331(6.8577)⇓ 8.9350(6.3272)↓ 8.1875(5.1730)⇊ 8.1502(4.8752)↑ 9.1528(7.0552)⇓
Average Rank in Friedman test 3.93 4.77 4.86 4.3 4.02 5.96 2.89 5.27

(a) (b) (c)

(d)

Fig. A1: Nemenyi post hoc test for intra-dataset testing, (a)(b)
fully supervised models on Dataset 2 and Dataset 3, (c) all
fully supervised intra-dataset testing, (d) semi-supervised U-
Net on Dataset 3. The smaller the ranking, the better. Methods
on the same thick black line have the same performance
statistically.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Fig. A2: Nemenyi post hoc test for cross-dataset testing, (a)
testing Dataset 2 with models trained based on Dataset 1
(Dataset 2 - Dataset 1), (b) external breast ultrasound dataset
- Dataset 1, (c) Dataset 1 - Dataset 2, (d) external breast ultra-
sound dataset - Dataset 2, (e) Dataset 4 - Dataset 3, (f) external
echocardiography dataset - Dataset 3, (g) Dataset 3 - Dataset
4, (h) external echocardiography dataset - Dataset 4, (h) all
the breast cross-dataset testing, (i) all the echocardiography
cross-dataset testing, (j) all the cross-dataset testing.

TABLE A14: Median metrics for intra-dataset testing of multi-
task despeckling-segmentation, where the column of single
task refers to single-task based segmentation, while other
columns refers to multi-task despeckling-segmentation with
SFS block based feature fusion.

Friedman test’s p-value: 4.2856e-8 (<0.05)
Nemenyi post hoc test: Single task Lee OBNLM DPAD PFDTV GLM DnCNN SARBM3D

Dataset 1

Accuracy 0.9940(0.0134) 0.9928(0.0203)↓ 0.9901(0.0204)↓ 0.9925(0.0187)↓ 0.9913(0.0219)↓ 0.9940(0.0156) 0.9933(0.0165) 0.9923(0.0186)↓
Precision 0.9473(0.0638) 0.9454(0.0722) 0.9298(0.0957)⇓ 0.9376(0.0784) 0.9434(0.0778) 0.9512(0.0626)↑ 0.9535(0.0521)↑ 0.9237(0.0914)⇓

Recall 0.9398(0.1072) 0.9242(0.0962)↓ 0.9444(0.0916)↑ 0.9289(0.1013)↓ 0.9140(0.1325)↓ 0.9279(0.0998)↓ 0.9057(0.1072)↓ 0.9507(0.1070)↑
Dice 0.9299(0.0647) 0.9175(0.0661)↓ 0.9175(0.0631)⇓ 0.9230(0.0704)↓ 0.9033(0.0888)⇓ 0.9252(0.0495) 0.9178(0.0668)↓ 0.9184(0.0601)↓

Surface Dice 0.4747(0.3619) 0.4503(0.4342) 0.3837(0.3619)⇓ 0.4375(0.3754)↓ 0.4149(0.3826)⇓ 0.4824(0.3898) 0.4902(0.3809)↓ 0.4183(0.3545)↓
95% HD 5.0000(8.9437) 5.6569(11.4998)↓ 6.4336(12.6922) 5.0000(13.2788)↓ 6.7812(20.9780)⇓ 5.8310(14.0704) 5.3852(10.9284)↓ 5.0000(14.0000)↓

ASSD 1.9135(2.6627) 2.1712(3.4703)↓ 2.5692(3.4915)↓ 2.1011(4.0296)↓ 2.5275(4.8057)⇓ 2.0893(2.9648) 2.1584(3.2495)↓ 2.2127(3.3417)↓

Dataset 2

Accuracy 0.9953(0.0117) 0.9945(0.0113)↓ 0.9945(0.0132)↓ 0.9945(0.0120)↓ 0.9944(0.0126)↓ 0.9950(0.0121)↓ 0.9950(0.0128)↓ 0.9946(0.0112)↓
Precision 0.9276(0.0888) 0.9252(0.1211) 0.9298(0.1104)⇊ 0.9311(0.1095)↓ 0.9153(0.1239)⇓ 0.9341(0.1055) 0.9158(0.1199)⇓ 0.9278(0.0925)

Recall 0.9327(0.0906) 0.9111(0.1121)⇓ 0.9178(0.1211)⇓ 0.9339(0.0984) 0.9221(0.1186)↓ 0.9225(0.1131)⇓ 0.9332(0.1119)↓ 0.9189(0.1242)⇓
Dice 0.9167(0.0633) 0.9034(0.0915)⇓ 0.9019(0.0967)⇓ 0.9064(0.0896)↓ 0.9001(0.0874)⇓ 0.9039(0.0802)⇓ 0.9062(0.0979)⇓ 0.9107(0.0747)↓

Surface Dice 0.6063(0.4423) 0.5291(0.3841)↓ 0.5403(0.4070)⇓ 0.5468(0.3518)↓ 0.5321(0.3914)⇓ 0.5473(0.4145)↓ 0.5404(0.3876)↓ 0.5540(0.3725)⇓
95% HD 4.6328(8.5809) 5.3852(14.0294)↓ 5.0743(12.2571)↓ 5.3274(12.2640)↓ 6.2181(12.9302)↓ 4.5513(10.5132) 5.3852(12.6205)⇓ 5.0248(8.3353)

ASSD 1.6511(2.5738) 2.0109(3.1687)↓ 1.8639(3.1135)⇓ 1.9237(3.0085)↓ 2.1848(3.0314)↓ 1.8622(3.0462)↓ 1.9200(3.2797)↓ 1.8679(2.7026)↓

Dataset 3

Accuracy 0.9890(0.0072) 0.9888(0.0074)↓ 0.9888(0.0073)↓ 0.9888(0.0077)↓ 0.9888(0.0072)↓ 0.9888(0.0075)↓ 0.9887(0.0073)↓ 0.9888(0.0074)↓
Precision 0.9441(0.0800) 0.9432(0.0776)↓ 0.9437(0.0809)↓ 0.9422(0.0808)↓ 0.9421(0.0810)↓ 0.9416(0.0812)↓ 0.9383(0.0824)⇓ 0.9400(0.0825)⇓

Recall 0.9484(0.0688) 0.9466(0.0703)↓ 0.9471(0.0709)↓ 0.9476(0.0717)↓ 0.9505(0.0692)↑ 0.9470(0.0707)↓ 0.9528(0.0668)⇑ 0.9512(0.0668)⇑
Dice 0.9358(0.0412) 0.9345(0.0408)↓ 0.9352(0.0412)↓ 0.9345(0.0417)↓ 0.9354(0.0420)↓ 0.9346(0.0417)↓ 0.9352(0.0422)↓ 0.9362(0.0424)↓

Surface Dice 0.7627(0.2407) 0.7576(0.2485)↓ 0.7593(0.2496)↓ 0.7581(0.2423)↓ 0.7609(0.2407)↓ 0.7563(0.2426)↓ 0.7585(0.2476)↓ 0.7577(0.2492)↓
95% HD 2.2361(1.0000) 2.2361(1.0000)↓ 2.2361(1.0000)↓ 2.2361(1.0000)⇓ 2.2361(1.0000)↓ 2.2361(1.0000)⇓ 2.2361(1.0000)↓ 2.2361(1.0000)↓

ASSD 0.9769(0.5370) 1.0054(0.5405)↓ 1.0003(0.5344)↓ 1.0035(0.5237)⇓ 1.0002(0.5291)↓ 1.0093(0.5420)⇓ 1.0014(0.5593)↓ 0.9979(0.5583)↓

Dataset 4

Accuracy 0.9906(0.0069) 0.9902(0.0077)↓ 0.9899(0.0070)↓ 0.9903(0.0072)↓ 0.9899(0.0079)↓ 0.9903(0.0073)↓ 0.9902(0.0073)↓ 0.9899(0.0070)↓
Precision 0.9467(0.0622) 0.9476(0.0668) 0.9478(0.0629) 0.9515(0.0664) 0.9426(0.0712)↓ 0.9573(0.0572)↑ 0.9507(0.0605) 0.9476(0.0714)

Recall 0.9593(0.0567) 0.9560(0.0565)↓ 0.9570(0.0598)↓ 0.9564(0.0594)↓ 0.9617(0.0578) 0.9465(0.0564)⇓ 0.9522(0.0603)⇓ 0.9585(0.0577)↓
Dice 0.9477(0.0354) 0.9458(0.0383)↓ 0.9454(0.0392)↓ 0.9455(0.0391)↓ 0.9444(0.0412)↓ 0.9455(0.0403)↓ 0.9433(0.0376)↓ 0.9413(0.0378)↓

Surface Dice 0.5107(0.2445) 0.4825(0.2488)↓ 0.4844(0.2767)↓ 0.5053(0.2459)↓ 0.4868(0.2626)↓ 0.4937(0.2692)↓ 0.4807(0.2451)⇓ 0.4822(0.2487)↓
95% HD 5.0000(3.3944) 5.0000(3.2111)↓ 5.0000(3.6746)↓ 5.0000(4.2047) 5.0149(3.6746)↓ 5.0000(3.4458) 5.3709(3.5348)↓ 5.3566(3.8102)↓

ASSD 1.8988(1.1783) 2.0053(1.2752)↓ 1.9644(1.2479)↓ 1.8988(1.3130)↓ 2.0341(1.2397)↓ 1.9252(1.3303)↓ 2.0521(1.3035)↓ 2.0376(1.2559)↓
Average Rank in Friedman test 2.12 5.54 5.0 3.98 5.82 3.86 5.0 4.68

Fig. A3: Nemenyi post hoc test for separated segmentation task
training and multi-task despeckling and segmentation training.
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B. Visualized segmentation results

Fig. B1: Visualization of U-Net segmentation results on 8
versions of Dataset 1. Each row shows the original image,
the segmentation results on the models trained from original
dataset, despeckled datasets by Lee, OBNLM, DPAD, PFDTV,
GLM, DnCNN and SARBM3D from left to right. The red
and cyan contours are the ground truth and model results
respectively. The samples in the first row perform relatively
equally in 8 different versions. In other rows, the result with
red rectangle border drawn has the best performance. It can
be seen that each version of the dataset can perform the
best in some samples, resulting in similar overall performance
indicated by Friedman test.

Fig. B2: Visualization of U-Net segmentation results on 8
versions of Dataset 2, similar to the meaning of Figure B1.

Fig. B3: Visualization of U-Net segmentation results on 8
versions of Dataset 3, similar to the meaning of Figure B1.
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Fig. B4: Visualization of U-Net segmentation results on 8
versions of Dataset 4, similar to the meaning of Figure B1.

Fig. B5: Visualization of DAEFF-Net segmentation results on
the original Dataset 4 and the OBNLM despeckled version (for
simplicity and clarity, only samples with an absolute difference
of more than 15% in the surface dice metric are shown).
Every three consecutive columns are the original image, the
segmentation results from the original dataset, and from the
OBNLM desepckled dataset. To compare the different segmen-
tation performances on the original dataset and the OBNLM
desepckled dataset, the small amounts of images above the
red line are the despeckled results of original dataset that have
better performances than those of OBNLM desepckled dataset,
while the large amounts of images below the red line are the
despeckled results of the OBNLM desepckled dataset that have
better performance than those of original datasets. This large
amount of images that are below the red-line illustrates a better
performance of the OBNLM desepckled dataset than that of
original dataset. This visualization results are consistent with
the paired test results in Table A4 (the row of DAEFF-Net and
the column of OBNLM).

Fig. B6: Visualization of CDM segmentation results on the
original Dataset 4 and OBNLM despeckled version (for sim-
plicity and clarity, only samples with an absolute difference
of more than 3% in the dice metric are shown). The meaning
is similar to Figure B5, illustrating the better performance of
the original dataset in visualization results. The visualization
results are consistent with the paired test results in Table A4
(the row of CDM and the column of OBNLM).
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Fig. B7: Visualization of semi-supervised U-Net segmentation
results on the original Dataset 3 and the PFDTV despeckled
version (for simplicity and clarity, only samples with an
absolute difference of more than 1 pixel in the ASSD metric
are shown). The meaning is similar to Figure B5, illustrating
the better performance of the PFDTV despeckled dataset in
visualization results. The visualization results are consistent
with the paired test results in Table A5 (the column of
PFDTV).
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